Organic and Biomolecular Chemistry

The secondary structure of a heptapeptide containing trifluoromethyl- λ^6 -tetrafluorosulfanyl substituted amino acids

Received 00th January 20xx,	A. Ikeda, ^a A. Capellan ^a and J. T. Welch ^{* a}
Accepted 00th January 20xx	University at Albany, SUNY, Department of Chemistry, 1400 Washington Ave, Albany, NY USA.
DOI: 10.1039/x0xx 00000x	Fax: 1-518-442-3462; Tel: 1-518-442-4455; E-mail: jwelch@albany.edu

www.rsc.org/

Abstract: Site specific introduction of the polar hydrophobic trifluoromethyl- λ^6 -tetrafluorosulfanyl (CF₃SF₄) group can effectively control the secondary structure of a heptapeptide, the minimum repeat unit of an α -helix. The structural influence of CF₃SF₄-containing amino acid on the heptapeptide was established using NMR methods.

^{a.} University at Albany, SUNY, Department of Chemistry, 1400 Washington Ave, Albany, NY USA.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Contents

General Information	S5
Experimental Details	
2-1. Synthesis of the CF_3SF_4 -substituted amino acid, <i>Boc</i> -NLe(Tts)-OH (2)	S5
Ethyl (RS)-N-(tert-butoxycarbonyl)-2-aminopent-4-enoate (A)	S5
(S)-N-(tert-butylcarbonyl)-2-aminopent-4-enoic acid (B)	S6
Methyl (S)-N-(tert-butoxycarbonyl)-2-aminopent-4-enoate (3)	S6
Methyl (2 <i>S</i> ,4 <i>RS</i>)- <i>N</i> -(<i>tert</i> -butoxycarbonyl)-2-amino-4-chloro- 6-trifluoro- λ^6 -tetrafluorosulfanylpentano-ate (4)	S6
(S,E)-N-(tert-butoxycarbonyl)-2-amino-6-trifluoromethyl-	
λ^6 -tetrafluorosulfanylpent-4-enoic acid (2)	S7
2-2. Synthesis of the CF_3SF_4 -substituted heptapeptide (S and T)	S7
2-2-1. General procedure	S7
General procedure for the coupling reaction	S7
General procedure for the deprotection reaction of Boc group	S 8
General procedure for the deprotection reaction of Fmoc group	S 8
2.2.2 Product Data	S8
Boc-Lys(Z)-Glu(OEt)-OEt (D)	S 8
TFA•Lys(Z)-Glu(OEt)-OEt (6)	S9
Boc-NLe(Tts)-Lys(Z)-Glu(OEt)-OEt (7)	S9
NLe(Tts)-Lys(Z)-Glu(OEt)-OEt TFA (8)	S9
<i>Fmoc</i> -Lys(<i>Boc</i>)-OAll (E)	S10
Lys(Boc)-OAll (F)	S11
Fmoc-Ser (tBu) -Lys (Boc) -OAll (G)	S11
Ser(<i>tBu</i>)-Lys(<i>Boc</i>)-OAll (H)	S11
<i>Fmoc</i> -Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll (I)	S11
Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll (9)	S12
Boc-NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll (10)	S12
Boc-NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-OH (11)	S13
<i>Boc</i> -NLe(Tts)-Glu(O <i>tBu</i>)-Ser(<i>tBu</i>)-Lys(<i>Boc</i>)-NLe(Tts)-Lys(<i>Z</i>)-Glu(OEt)-OEt (12)	S13
NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt (5)	S14
2-3. Determination of the enantiomeric purity for the CF_3SF_4 -substituted	
amino acid, Boc-NLe(Tts)-OH (3)	S15
2-3-1. General procedure	S15
2-3-2. Analysis for the enantiomeric purity	
The ¹⁹ F NMR data for the amino acid methyl ester (L)	S15

This journal is © The Royal Society of Chemistry 20xx

The ¹⁹ F NMR data for the <i>Boc</i> -NLe(Tts)-Lys(Z)-Glu(OEt)-OEt (M)	S16
The ¹⁹ F NMR data for the <i>Boc</i> -NLe(Tts)-Glu(OtBu)-Ser(tBu)-	
Lys(<i>Boc</i>)-OAll (Z)	S16
References	S17
2-4. NMR structure determination.	
2-4-1a. <i>Boc</i> -NLe(Tts)-Glu(O <i>tBu</i>)-Ser(<i>tBu</i>)-Lys(<i>Boc</i>)-NLe(Tts)-Lys(<i>Z</i>)-Glu(OEt)-OEt	
Proton assignments	S18
2-4-1b. Backbone torsional angles from TALOS	S19
2-4-1c. Sidechain torsional angles from Cyana	S20
2-4-1d. Significant NOE Relationships	S21
2-4-2a. NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt	
Proton assignments	S22
2-4-2b. Sidechain torsional angles from Cyana	S23
2-4-2c. Significant NOE Relationships	S24
Supporting Figures Spectra	
A Ethyl (RS)-N-(tert-butoxycarbonyl)-2-aminopent-4-enoate	S25
$\mathbf{B}(S)$ - N -(<i>tert</i> -butylcarbonyl)-2-aminopent-4-enoic acid	S27
3 Methyl (S)-N-(tert-butoxycarbonyl)-2-aminopent-4-enoate	S28
4 (2S,4S) Methyl <i>N</i> -(<i>tert</i> -butoxycarbonyl)-2-amino-4-chloro-	
6 -trifluoro- λ° -tetrafluorosulfanylpentanoate	\$30
4 (2S , 4R) Methyl <i>N</i> -(<i>tert</i> -butoxycarbonyl)-2-amino-4-chloro- 6-trifluoro- λ^6 -tetrafluorosulfanylpentano-ate	S33
2 S,E)-N-(tert-butoxycarbonyl)-2-amino-6-trifluoromethyl-	
λ^6 -tetrafluorosulfanylpent-4-enoic acid	S36
D <i>Boc</i> -Lys(<i>Z</i>)-Glu(OEt)-OEt	S40
7 Boc-NLe(Tts)-Lys(Z)-Glu(OEt)-OEt	S43
E Fmoc-Lys(Boc)-OAll	S47
F Lys(<i>Boc</i>)-OAll	S49
G <i>Fmoc</i> -Ser(<i>tBu</i>)-Lys(<i>Boc</i>)-OAll	S51
H Ser(<i>tBu</i>)-Lys(<i>Boc</i>)-OAll	S53
I Fmoc-Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll	S55
9 Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll	S58
10 Boc-NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll	S61
11 Boc-NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-OH	S65
12 <i>Boc</i> -NLe(Tts)-Glu(O <i>tBu</i>)-Ser(<i>tBu</i>)-Lys(<i>Boc</i>)-NLe(Tts)-Lys(<i>Z</i>)-Glu(OEt)-OEt	S69

5 NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt	S70
12 HSQC <i>Boc</i> -NLe(Tts)-Glu(O <i>tBu</i>)-Ser(<i>tBu</i>)-Lys(<i>Boc</i>)-NLe(Tts)-Lys(<i>Z</i>)-Glu(OEt)-OEt	S71
12 TOCSY <i>Boc</i> -NLe(Tts)-Glu(O <i>tBu</i>)-Ser(<i>tBu</i>)-Lys(<i>Boc</i>)-NLe(Tts)-Lys(<i>Z</i>)-Glu(OEt)-OEt	S72
12 ROESY <i>Boc</i> -NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-NLe(Tts)-Lys(Z)-Glu(OEt)-OEt	S73
12 ROESY (CARA) <i>Boc</i> -NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-NLe(Tts)-Lys(Z)-Glu(OEt)-OEt	S74
5 NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt	S75
5 ROESY NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt	S76
5 ROESY (CARA) NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt	S77
5 TOCSY NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt	S78

1. General information

Unless otherwise noted, all chemical reagents were purchased from commercial suppliers and used without further purification. All solvents were freshly distilled with standard methods. Chloroform-d (D, 99.8%) + (0.05% v/v TMS) was purchased from Cambridge Isotope Laboratories, Inc. Reactions were followed by analytical thin later chromatography (TLC), performed with silica get F254 as the adsorbent on 0.2 mm thick, plastic-backed plates. The chromatograms were visualized by fluorescence quenching with UV light (254 nm) or by staining with either potassium permanganate followed by heating. Flash column chromatography was performed on Silica gel 60, 70-230 mesh (Solvent Technologies, LLC.). Nuclear magnetic resonance (NMR) spectra were recorded in CDCl₃ on a 400 Ultrashield spectrometer (Bruker, Billerica, MA, USA) operating at 400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F, and or a Bruker 600 Advance III HD with OCI Cryoprobe operating at 600 MHz for ¹H. The chemical shifts (δ) of the signals in ¹H and ¹³C NMR were reported in parts per million (ppm) relative to residual standard CHCl₃ in CDCl₃ (7.26 ppm and 77.0 ppm, respectively). The chemical shifts of the signals in 19 F NMR were given in ppm relative to CFCl₃ (0.00 ppm) as an internal standard. All ¹³C NMR spectra were acquired in the proton-decoupled mode. The values of coupling constants (J) are quoted in Hertz (Hz). The multiplicities were assigned as a s (singlet), d (doublet), t (triplet), q (quartet), p (pentet) and m (multiplet). A DART-AccuTOF (JEOL USA, Inc., Peabody, MA, USA) time-of-flight mass spectrometer operating in positive and negative ion mode was performed with a polyethylene glycol spectrum as reference standard for exact mass measurements (PEG average molecular weight: 600). Melting points (mp) were obtained using MET-TEMP (Laboratory Devices, Auburn, CA, USA).

Infrared spectra (IR) were recorded on a UATR 2 FTIR (Perkin Elmer, Boston, MA, USA).

2. Experimental details

2-1. Synthesis of the CF₃SF₄-substituted amino acid, Boc-NLe(Tts)-OH (2)

Ethyl (*RS*)-*N*-(*tert*-butoxycarbonyl)-2-aminopent-4-enoate (**A**)

According to the reference,¹ to a mixture of *N*,*N*-diisopropylamine (3.7 mL, 25.3 mmol, 1.05 eq.) in THF (50.0 mL) was added *n*-BuLi (2.5 M solution in hexane) (11.0 mL, 26.3 mmol, 1.05 eq.) slowly at 0 °C. After stirring for 30 minutes, ethyl 2-(diphenylmethylamino)acetate (6.6 g, 25.0 mmol, 1.0 eq.) was added to the reaction mixture at –78 °C. The reaction mixture was stirred for two hours at the same temperature, and then allyl bromide (2.3 mL, 26.3 mmol, 1.05 eq.) was added to the mixture. After stirring for an additional hour, the reaction mixture was stirred at 0 °C for overnight. When the reaction was completed, the mixture was quenched with water (80 mL) and extracted with ethyl acetate (AcOEt) (3 x 20.0 mL). The organic phase was dried over magnesium sulfate (MgSO₄), and filtered and concentrated *in vacuo*. The product (A) was obtained as a yellow oil in 100 % crude yield (7.7 g, 25.0 mmol). To a mixture of A (7.7g, 25.0 mmol, 1.0 eq.) in THF (150.0 mL) was added 15 % solution of citric acid (150.0 mL, 112.5 mmol, 4.5 eq.) at room temperature. After 11 hours, the reaction mixture was treated with acid-base work up with 10 % HCl, saturated NaHCO₃ solution and dichloromethane (DCM). The combined organic phase was dried over MgSO₄, and filtered and concentrated *in vacuo*. The product (B) was obtained as a yellow oil in 73 % crude yield (2.6 g, 18.3 mmol). To a mixture of B (2.6 g, 18.3 mmol) in DCM (36 mL) was added Et₃N (7.7 mL, 54.9 mmol, 3.0 eq.) and di-*tert*-butyl dicarbonate (6.3 mL, 27.5 mmol, 1.5 eq.) at room temperature. After

stirring for overnight, the reaction mixture was quenched with water (25.0 mL) and then extracted with DCM (3 x 15.0 mL). The crude product was purified by flash column chromatography (AcOEt:hexane = 5:95) to afford the title product (C) as a colorless oil in 89 % yield (4.0 g, 16.3 mmol). ¹H NMR (CDCl₃, 400 MHz) δ : 5.75–5.65 (m, 1H, H γ), 5.15–5.11 (m, 2H, H δ), 5.04 (d, 2H, J = 6.75 Hz, NH), 4.38–4.33 (m, 1H, H α), 4.26–4.14 (m, 2H, OCH₂), 2.59–2.44 (m, 2H, H β), 1.44 (s, 9H, *Boc*), 1.28 (t, 3H, J = 7.24 Hz, OCH₂CH₃), which was similar to the literature data.^{1,2,3}

(S)-N-(tert-butylcarbonyl)-2-aminopent-4-enoic acid (C)

According to the reference,² to a solution of (*RS*)-**A** (730.0 mg, 3.0 mmol, 1.0 eq.) in DMF (3.0 mL) and distilled water (8.0 mL) was added subtilisin (10 units/mg) (3.5 mg, 35units, 11.7 eq.), and then few drops of aqueous NH₃.to maintain the pH of the reaction mixture at 8.0. After stirring at 40 °C for three hours, the mixture was extracted with diethyl ether (Et₂O) (3 x 5.0 mL). And the aqueous phase was acidified with citric acid (pH 3.0), then extracted with AcOEt (3 x 5.0 mL). The combined organic phase was dried over MgSO₄, and filtered and concentrated *in vacuo*. The title product (D) was obtained as a colorless oil in 100 % yield (322.0 mg, 3.0 mmol). The purity of the product was sufficient to proceed to the next step without further purification. ¹H NMR (CDCl₃, 400 MHz) δ : 5.75–5.64 (m, 1H, H γ), 5.15–5.11 (m, 2H, H δ), 5.04 (d, 1H, J = 5.38 Hz, NH), 4.38–4.33 (m, 1H, H α), 2.59–2.44 (m, 2H, H β), 1.44 (s, 9H, *Boc*), which was similar to the literature data.^{2,4}

Methyl (S)-N-(tert-butoxycarbonyl)-2-aminopent-4-enoate (3)

According to the reference,² to a solution of **D** (172.0 mg, 0.8 mmol. 1.0 eq.) in DMF (1.6 mL) was added potassium carbonate (166.0 mg, 1.2 mmol, 1.5 eq.) at room temperature. After stirring for 10 minutes, methyl iodide (0.1 mL, 1.6 mmol, 2.0 eq.) at the same temperature. When the reaction was completed, the mixture was quenched with water (5.0 mL) and then extracted with AcOEt (3 x 5.0 mL). The combined organic phase was dried over MgSO₄, and filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (AcOEt:hexane = 10:90) to afford the title product (E) as a colorless oil in 93% yield (170.0 mg, 0.74 mmol). ¹H NMR (CDCl₃, 400 MHz) δ : 5.71–5.67 (m, 1H, H γ), 5.16–5.11 (m, 2H, H δ), 5.02 (br s, 1H, NH), 4.42–4.35 (m, 1H, H α), 3.75 (s, 3H, OCH₃), 2.60–2.42 (m, 2H, H β), 1.45 (s, 9H, *Boc*); ¹³C NMR (100 MHz, CDCl₃) δ : 172.55 (ester C=O), 155.19 (amide C=O), 132.30 (C δ), 119.10 (C γ), 79.92 (*Boc*-C), 52.92 (C α), 52.23 (OCH₃), 36.81 (C β), 28.30 (3C, C1, *Boc*); HRMS (DART-ESI, m/z) Calcd. For C₁₁H₂₀NO₄+: 230.1387(M+), Found: 230.1377, which was similar to the literature data.⁵

Methyl (2*S*,4*RS*)-*N*-(*tert*-butoxycarbonyl)-2-amino-4-chloro-6-trifluoro- λ^6 -tetrafluorosulfanylpentanoate (4)

According to the reference,² to a mixture of **3** (23.0 mg, 0.1 mmol, 1.0 eq.) in pentane (1.6 mL) was added CF_3SF_4Cl (0.32 M solution in pentane) (0.38 mL, 0.12 mmol, 1.2 eq.) at 0 °C, and then was added triethylborane (1.0 M solution in hexane) (0.01 mL, 0.01 mmol, 0.1 eq.) slowly. After stirring for one hour, the reaction mixture was quenched with saturated NaHCO₃ solution and extracted with Et₂O (3 x 5.0 mL). The combined organic phase was dried over MgSO₄, and filtered and concentrated *in vacuo*. The crude

product was purified by flash column chromatography (AcOEt:hexane = 5:95) to afford the title product (F) as a colorless oil in 91 % yield (40.0 mg, 0.09 mmol). ¹H NMR (CDCl₃, 400 MHz) δ : 5.43 (d, 1H, J = 7.47 Hz, NH), 4.60–4.50 (m, 2H, Hα and γ), 4.22–4.01 (m, 2H, Hδ), 3.76 (s, 3H, OCH₃), 2.61 (ddd, 1H, J = 14.53, 7.08, 2.87 Hz, H β), 2.23 (ddd, 1H, J = 14.53, 9.94, 4.53 Hz, H β), 1.42 (a, 9H, Boc); ¹³C NMR (100 MHz, CDCl₃) δ: 171.73 (ester C=O), 154.96 (amide C=O), 123.14 (qp, J = 328.19, 49.50 Hz, CF₃), 80.34 (Boc-C), 77.97 (p, J = 15.77 Hz, Cδ), 52.57 (C6, OCH3), 51.74 (p, J = 4.87 Hz, Cγ), 50.84 (Cα), 39.79 (Cβ), 28.05 (3C, Boc); ¹⁹F NMR (CDCl₃, 376 MHz) δ: 43.03 (pt, J = 25.06, 8.18 Hz, SF4), -64.28 (p, J = 25.09 Hz, CF₃); HRMS (DART-ESI, m/z) Calcd. For C₁₂H₂₀ClF₇NO₄S+: 442.0684(M+), Found: 442.0709 for methyl (2*S*,4*S*)-*N*-(*tert*-butoxycarbonyl)-2-amino-4-chloro-6-trifluoro- λ^6 -tetrafluorosulfanylpentanoate. ¹H NMR (CDCl₃, 400 MHz) δ : 5.24 (d, 1H, J = 8.09Hz, NH), 4.55–4.49 (m, 2H, H α and γ), 4.24–4.10 (m, 1H, Hδ), 4.10–3.96 (m, 1H, Hδ), 3.72 (s, 3H, OCH₃), 2.34 (ddd, 1H, J = 16.87, 10.58, 2.22 Hz, Hβ), 2.23–2.17 (m, 1H, H β), 1.40 (s, 9H, Boc); ¹³C NMR (100 MHz, CDCl₃) δ : 172.06 (ester C=O), 155.57 (amide C=O), 123.14 (qp, J = 328.37, 49.04 Hz, CF₃), 80.37 (*Boc*-C), 78.07 (p, J = 15.69 Hz, C\delta), 52.52 (C6, OCH₃), 52.32 $(p, J = 4.95 \text{ Hz}, C\gamma), 51.23 (C\alpha), 40.09 (C\beta), 28.03 (3C, Boc);$ ¹⁹F NMR (CDCl₃, 376 MHz) δ : 43.07 (qt, J = 25.01, 8.42 Hz, 4F, SF₄), -64.25 (p, J = 25.21 Hz, 3F, CF₃); HRMS (DART-ESI, m/z) Calcd. For C₁₂H₂₀ClF₇NO₄S+: 442.0684 (M+), Found: 442.0701 for methyl (2S,4R)-N-(tert-butoxycarbonyl)-2-amino-4-chloro-6-trifluoro- λ^6 -tetrafluorosulfanylpentanoate.

(S,E)-N-(tert-butoxycarbonyl)-2-amino-6-trifluoromethyl- λ^6 -tetrafluorosulfanylpent-4-enoic acid (2)

To a mixture of 4 (22.0 mg, 0.05 mmol, 1.0 eq.) in ethanol (0.25 mL) and water (0.25 mL) was added lithium hydroxide monohydrate (6.0 mg, 0.15 mmol, 3.0 eq.) at room temperature. After stirring for overnight, the reaction mixture was quenched with 10% HCl solution (3.0 mL) and extracted with Et₂O (3 x 5.0 mL). The combined organic phase was dried over MgSO₄, and filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography (AcOEt:hexane = 10:90) to afford the title product (G) as a colorless oil in 76 % yield (15.0 mg, 0.038 mmol). ¹H NMR (CDCl₃, 400 MHz) δ : 6.64–6.54 (m, 1H, H γ), 6.54 (br s, 1H, OH), 6.54–6.42 (m, 1H, H δ), 5.25–5.01 (br s, 1H, NH), 4.61–4.42 (m, 1H, H α), 2.85–2.51 (m, 2H, H β), 1.46 (s, 9H, *Boc*); ¹³C NMR (100 MHz, CDCl₃) δ : 174.90 (acid C=O), 155.25 (amide C=O), 144.23 (p, J = 21.69 Hz, C δ), 132.73 (p, J = 7.36 Hz, CF₃), 123.38 (qp, J = 327.19, 48.09 Hz, C γ), 80.91 (*Boc*-C), 52.13 (C α), 33.52 (C β), 28.15 (3C, *Boc*); ¹⁹F NMR (CDCl₃, 376 MHz) δ : 39.95 (qd, J = 24.97, 5.45 Hz, 4F, SF₄), –64.13 (p, J = 24.52 Hz, 3F, CF₃); HRMS (DART-ESI, m/z) Calcd. For C₁₁H₁₇F₇NO₄S+: 392.0761 (M+), Found: 392.0760.

2-2. Synthesis of the CF₃SF₄-substituted heptapeptide

2-2-1. General procedure

General procedure for the coupling reaction¹

To a reaction mixture of an amino acid A (0.5 mmol, 1.0 eq.) in THF (5.0 mL) was added another amino acid B (0.5 mmol, 1.0 eq.), 1-hydroxybenzotriazole (92.0 mg, 0.6 mmol, 1.2 eq.), *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (115.0 mg, 0.6 mmol, 1.2 eq.) and *N*-methylmorpholine (0.093 mL, 0.85 mmol, 1.7 eq.) at room temperature. After monitoring with TLC until the reaction was completed, the reaction mixture was quenched with water (10.0 mL) and extracted with

DCM (3 x 10.0 mL). The combined organic phase was dried over $MgSO_4$, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography to obtain the coupling peptide.

General procedure for the deprotection reaction of *Boc* group¹

To a mixture of an amino acid (0.5 mmol, 1.0 eq.) in DCM (3.0 mL) was added trifluoroacetic acid (0.2 mL, 2.5 mmol, 5.0 eq.) at 0 °C. The reaction mixture was allowed to increase to room temperature. After the reaction was completed with monitoring with TLC, the mixture was concentrated *in vacuo*. The purity of the product was enough sufficient to proceed to the next step without further purification.

General procedure for the deprotection reaction of Fmoc group

To a mixture of an amino acid (0.5 mmol, 1.0 eq.) in DCM (1.5 mL) was added piperidine (0.3 mL, 3.0 mmol, 6.0 eq.) at 0 °C. After stirring for 10 minutes, the reaction mixture was concentrated *in vacuo*. The crude product was purified by flash column chromatography to afford the deprotected peptide.

Boc-Lys(*Z*)-Glu(OEt)-OEt (**D**)

According to the method showed before, the title product was obtained as a white solid in 98 % yield (277.0 mg, 0.49 mmol) with flash column chromatography (AcOEt:hexane = 20:80). ¹H NMR (CDCl₃, 400 MHz) δ : 7.33–7.30 (m, 5H, *Cbz* of Lys), 7.30–8.28 (m, 1H, amide NH of Lys), 6.95–6.83 (m, 1H, amide NH of Glu), 5.31–5.20 (m, 1H, Boc NH of Lys), 5.20–5.10 (m, 1H, *Cbz*-NH of Lys), 5.08–5.06 (m, 2H, Cbz-CH₂ of Lys), 4.58–4.52 (m, 1H, Hα of Glu), 4.16–4.07 (m, 5H, Hα of Lys and OCH₂ of Glu), 3.18–3.17 (m, 2H, Hε of Lys), 2.48–2.29 (m, 2H, Hγ of Glu), 2.25–1.91 (m, 2H, Hβ of Glu), 1.85–1.57 (m, 2H, Hδ of Lys), 1.54–1.47 (m, 2H, Hγ of Lys), 1.42 (s, 9H, *Boc* of Lys), 1.40–1.35 (m, 2H, Hβ of Lys), 1.22 (t, 6H, OCH₂CH₃),); ¹³C NMR (CDCl₃, 100 MHz) δ : 172.87 (ester C=O of Glu), 172.48 (ester C=O of Glu), 171.63 (amide C=O of NLe), 156.78 (*Cbz* C=O of Lys), 155.81 (*Boc* C=O of NLe), 136.74 (*Cbz* of Lys), 128.50 (2C, *Cbz* of Lys), 128.09 (*Cbz* of Lys), 128.06 (2C, *Cbz* of Lys), 79.99 (*Boc*-C of Lys), 66.61 (*Cbz*-CH₂ of Lys), 61.66 (OCH₂ of Glu), 60.73 (OCH₂ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80 (Cα of Lys), 40.44 (Cε of Lys), 31.98 (Cδ of Lys), 54.32 (Cα of Glu), 51.80

Lys), 30.32 (Cγ of Glu), 29.33 (Cγ of Lys), 28.34 (3C, *Boc* of Lys), 27.10 (Cβ of Glu), 22.38 (Cβ of Lys), 14.18 (OCH₂CH₃ of Glu), 14.12 (OCH₂CH₃ of Glu), which was similar to the literature data.1

TFA. Lys(Z)-Glu(OEt)-OEt (6)

According to the method showed before, the title product was obtained as a yellow oil in 100 % yield (290.0 mg, 0.5mmol). The purity of the product was sufficient for the next step.

Boc-NLe(Tts)-Lys(Z)-Glu(OEt)-OEt (7)

According to the method showed before, the title product was obtained as a white solid in 76 % yield (319.0 mg, 0.38 mmol) with flash column chromatography (MeOH:DCM = 2:98). Mp.: 113–114 °C.: ¹H NMR (CDCl₃, 400 MHz) δ: 7.38–7.35 (m, 5H, Cbz of Lys), 7.17–7.06 (m, 2H, amide NH of Lys and Glu), 6.61– 6.55 (m, 1H, Hγ of NLe), 6.52–6.46 (m, 1H, Hδ of NLe), 5.47 (d, J = 18.55 Hz, 1H, Boc-NH of NLe), 5.33– 5.26 (m, 1H, *Cbz*-NH of Lys), 5.11 (s, 2H, *Cbz*-CH₂ of Lys), 4.54 (td, J = 12.44, 3.76 Hz, 1H, Hα of Glu), 4.51–4.45 (m, 1H, Hα of Lys), 4.44–4.38 (m, 1H, Hα of NLe), 4.17 (q, J = 7.08 Hz, 2H, OCH₂ of Glu), 4.15 (q, J = 7.08 Hz, 2H, OCH₂ of Glu), 3.23–3.17 (m, 2H, Hε of Lys), 2.75–2.46 (m, 2H, Hβ of NLe), 2.45–2.36 (m, 2H, H γ of Glu), 2.11 (dddd, J = 124.50, 26.20, 13.40, 6.17 Hz, 2H, H β of Glu), 1.91–1.68 (m, 2H, H δ of Lys), 1.57-1.50 (m, 2H, Hy of Lys), 1.45 (s, 9H, Boc of NLe), 1.42-1.37 (m, 2H, Hβ of Lys), 1.28-1.23 (m, 6H, OCH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.10 (ester C=O of Glu), 171.52 (ester C=O of Glu), 171.13 (amide C=O of Lys), 170.48 (amide C=O of NLe), 156.76 (Cbz C=O of Lys), 155.40 (Boc C=O of NLe), 144.02 (p, J = 22.00 Hz, Cδ of NLe), 136.53 (*Cbz* of Lys), 133.49 (p, J = 6.68 Hz, Cγ of NLe), 128.48 (2C, Cbz of Lys), 128.07 (Cbz of Lys), 128.06 (2C, Cbz of Lys), 123.39 (pq, J = 328.47, 50.67 Hz, CF₃ of NLe), 80.62 (Boc-C of NLe), 66.69 (Cbz-CH2 of Lys), 61.73 (OCH2 of Glu), 60.88 (OCH2 of Glu), 52.93 (Cα of Lys), 52.02 (Cα of Glu), 51.93 (Cα of NLe), 40.05 (Cε of Lys), 33.51 (Cβ of NLe), 31.73 (Cδ of Lys), 30.31 (Cy of Glu), 29.12 (Cy of Lys), 28.18 (3C, Boc of NLe), 26.66 (Cβ of Glu), 21.75 (Cβ of Lys), 14.08 $(OCH_2CH_3 \text{ of } Glu)$, 14.05 $(OCH_2CH_3 \text{ of } Glu)$; ¹⁹F NMR $(CDCl_3, 376 \text{ MHz}) \delta$: 40.00 (qd, J = 24.57, 5.65 Hz)4F, SF₄), -64.13 (p, J = 24.05 Hz, 3F, CF₃); HRMS (DART-ESI, m/z) Calcd. For $C_{34}H_{50}F_7N_4O_{10}S+$: 839.3130(M+), Found: 839.3145.

NLe(Tts)-Lys(Z)-Glu(OEt)-OEt TFA (8)

According to the method shown before, the title product was obtained quantitatively as a yellow oil (361.0 mg, 0.5 mmol). The product was sufficient for the next step without further purification.

Fmoc-Lys(Boc)-OAll (E)

To a mixture of *Fmoc*-Lys(Boc)-OH (2.3g, 5.0 mmol, 1.0 eq.) in acetonitrile (10.0 mL) was added allyl bromide (12.0 mL, 140 mmol, 28.0 eq.) and diisopropylethylamine (1.8 mL, 10.0 mmol, 2.0 eq.) at 40 °C. After stirring for 4 hours, the reaction mixture was quenched with 10 % HCl solution (20.0 mL) and extracted with DCM (3 x 15.0 mL). The combined organic phase was dried over MgSO₄, and filtered and evaporated *in vacuo*. The title product was obtained as a white solid in 97 % yield (247.0 mg, 0.49 mmol) with flash column chromatography (AcOEt:hexane = 10:90). ¹H NMR (CDCl₃, 400 MHz) δ : 7.77 (d, J = 7.57 Hz, 2H, *Fmoc*), 7.61 (d, J = 7.19 Hz, 2H, *Fmoc*), 7.41 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.32 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.32 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.33 Hz, *Fmoc*), 7.34 Hz, *Fmoc*), 7.34 Hz, *Fmoc*), 7.34 Hz, *Fmoc*), 7.34 Hz, *Fmoc*), 7.35 Hz, 2H, *Fmoc*), 7.41 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.32 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.35 Hz, 2H, *Fmoc*), 7.41 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.32 Hz, *Fmoc*), 7.41 Hz, *Fmoc*), 7.41 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.32 Hz, *Fmoc*), 7.41 Hz, *Fmoc*), 7.41 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.32 Hz, *Fmoc*), 7.41 Hz, *Fmoc*), 7.41 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.32 Hz, *Fmoc*), 7.41 Hz, *Fmoc*), 7.41 (dd, J = 7.43, 7.43 Hz, *Fmoc*), 7.32 Hz, *Fmoc*), 7.41 Hz, *F*

7.43 Hz, 2H, *Fmoc*), 5.97–5.87 (m, 1H, OCH₂CH), 5.42–5.41 (m, 1H, *Boc*-NH), 5.36–5.26 (m, 2H, OCH₂CHCH₂), 4.66 (d, J = 5.17 Hz, 2H, *Fmoc*-CH₂), 4.60–4.56 (m, 1H, H α), 4.45–4.36 (m, 2H, OCH₂), 3.16–3.07 (m, 2H, H ϵ), 1.93–1.65 (m, 2H, H δ), 1.55–1.48 (m, 2H, H γ), 1.44 (s, 9H, *Boc*), 1.41–1.35 (m, 2H, H β), which was similar to the literature data.¹²

Lys(Boc)-OAll (F)

According to the method showed before, the title product was obtained as a yellow oil in 98 % yield (140.0 mg, 0.49 mmol) with flash column chromatography (MeOH:DCM = 1:99). ¹H NMR (CDCl₃, 400 MHz) δ : 5.97–5.88 (m, 1H, OCH₂CH), 5.36–5.25 (m, 2H, OCH₂CHCH₂), 4.62 (d, J = 6.14 Hz, OCH₂), 4.59–4.52 (m, 1H, Ha), 3.13–3.10 (m, 2H, H\epsilon), 1.81–1.57 (m, 2H, H\delta), 1.55–1.47 (m, 4H, Hγ and Hβ), 1.44 (s, 9H, *Boc*), which was similar to the literature data.¹

Fmoc-Ser(tBu)-Lys(Boc)-OAll (G)

According to the method showed before, the title product was obtained as a white solid in 99 % yield (323.0 mg, 0.5 mmol) with flash column chromatography (AcOEt:hexane = 10:90). ¹H NMR (CDCl₃, 400 MHz) δ : 7.77 (d, J = 7.76 Hz, 2H, *Fmoc* of Ser), 7.61 (d, J = 6.68 Hz, 2H, Fmoc- of Ser), 7.40 (dd, J = 7.22, 7.22 Hz, 2H. *Fmoc* of Ser), 7.41–4.39 (m, 1H, amide NH of Lys), 7.32 (dd, J = 7.22, 7.22 Hz, 2H, *Fmoc* of Ser). 5.97–5.84 (m, 1H, OCH₂CH of Lys), 5.83–5.73 (m, 1H, *Boc*-NH of Lys), 5.36–5.25 (m, 2H, OCH₂CHCH₂ of Lys), 4.64 (d, J = 5.14 Hz, *Fmoc*-CH₂ of Ser), 4.63–4.59 (m, 1H, Ha of Lys), 4.59–4.53 (m, 1H, Ha of Ser), 4.40 (d, J = 7.03 Hz, OCH₂ of Lys), 3.85–3.38 (m, 2H, H\beta of Ser), 3.15–3.04 (m, 2H, Hε of Lys), 1.95–1.68 (m, 2H, Hδ of Lys), 1.55–1.47 (m, 2H, Hγ of Lys), 1.44 (s, 9H, *Boc* of Lys), 1.40–1.30 (m, 2H, Hβ of Lys), 1.24 (s, 9H, *Boc* of Ser), which was similar to the literature data.¹

Ser(*tBu*)-Lys(*Boc*)-OAll (**H**)

According to the method showed before, the title product was obtained as a yellow oil in 85 % yield (183.0 mg, 0.43 mmol) with flash column chromatography (MeOH:DCM = 1:99). ¹H NMR (CDCl₃, 400 MHz) δ : 7.92 (d, J = 8.06 Hz, 1H, amide NH of Lys), 5.96–5.86 (m, 1H, OCH₂CH of Lys), 5.36–5.24 (m, 2H, OCH₂CHCH₂ of Lys), 4.63 (d, J = 6.23 Hz, OCH₂ of Lys), 4.62–4.58 (m, 1H, H\alpha of Lys), 4.58–4.53 (m, 1H, H\alpha of Ser), 3.59–3.50 (m, 2H, H\beta of Ser), 3.15–3.03 (m, 2H, H\epsilon of Lys), 1.92–1.65 (m, 2H, H\delta of Lys), 1.54–1.47 (m, 2H, H\gamma of Lys), 1.43 (s, 9H, *Boc* of Lys), 1.39–1.31 (m, 2H, H\beta of Lys), 1.19 (s, 9H, *Boc* of Ser), which was similar to the literature data.¹

Fmoc-Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll (I)

According to the method showed before, the title compound was obtained as a white solid in 83 % yield (347.0 mg, 0.42 mmol) with flash column chromatography (MeOH:DCM = 1:99). ¹H NMR (CDCl₃, 400 MHz) δ : 7.76 (d, J = 7.17 Hz, Fmoc of Glu), 7.60 (d, J = 7.17 Hz, Fmoc of Glu), 7.40 (dd, J = 7.17, 7.17 Hz, Fmoc of Glu), 7.37–7.33 (m, 1H, amide NH of Lys), 7.31 (dd, J = 7.17, 7.17 Hz, Fmoc of Glu), 7.09 (d, J = 7.17, 7.17 Hz, Fmoc of Glu), 7.00 (d, J = 7.17, 7.17 Hz, Fmoc of Glu), 7.00 (d, J = 7.17, 7.17 Hz, Fmoc of Glu), 7.00 (d, J = 7.17, 7.17 Hz), 7.00 (d, J = 7.17, 7.17 Hz)

5.53 Hz, amide NH of Ser), 6.04–5.84 (m, 2H, *Boc*-NH of Lys and OCH₂CH of Lys), 5.35–5.23 (m, 2H, OCH₂CHCH₂), 4.62 (d, J = 5.18 Hz, *Fmoc*-CH₂ of Lys), 4.60–4.56 (m, 1H, Hα of Lys), 4.51–4.44 (m, 1H, Hα of Ser), 4.43–4.42 (m, 2H, OCH₂ of Lys), 4.29–4.24 (m, 1H, Hα of Glu), 3.86–3.37 (m, 2H, Hβ of Ser), 3.10–3.01 (m, 2H, Hε of Lys), 2.52–2.32 (m, 2H, Hγ of Glu), 2.21–1.93 (m, 2H, Hβ of Glu), 1.91–1.64 (m, 2H, Hδ of Lys), 1.47 (s, 9H, *Boc* of Glu), 1.44 (s, 9H, Boc of Lys), 1.40–1.25 (m, 4H, Hγ and Hβ of Lys), 1.19 (s, 9H, *Boc* of Ser); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.16 (ester C=O of Glu), 171.61 (ester C=O of Lys), 171.30 (amide C=O of Ser), 169.98 (amide C=O of Glu), 156.06 (*Boc* C=O og Lys), 143.90 (2C, *Fmoc* of Glu), 125.22 (2C, *Fmoc* of Glu), 131.72 (OCH₂CH of Lys), 127.82 (2C, *Fmoc* of Glu), 127.18 (2C, *Fmoc* of Glu), 125.22 (2C, *Fmoc* of Glu), 120.07 (2C, *Fmoc* of Glu), 118.94 (OCH₂CHCH₂ of Lys), 81.24 (*Boc*-C of Lys), 79.27 (*Boc*-C of Glu), 74.26 (*tBu*-C of Ser), 67.35 (*Fmoc*-CH2 of Glu), 65.91 (OCH₂ of Lys), 61.22 (Cβ of Ser), 54.91 (Cα of Ser), 53.26 (Cα of Glu), 52.30 (Cα of Lys), 47.21 (Cε of Lys), 32.06 (Cδ of Lys), 31.94 (Cγ of Glu), 31.78 (Cγ of Lys), 29.55 (Cβ of Glu), 28.51 (3C, Boc of Lys), 28.16 (3C, *Boc* of Glu), 27.44 (3C, *tBu* of Ser), 22.50 (Cβ of Lys), which was similar to the literature data.¹

Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll (9)

According to the method showed before, the title compound was obtained as a yellow oil in 90 % yield (277.0 mg, 0.45 mmol) with flash column chromatography (MeOH:DCM = 1:99). ¹H NMR (CDCl₃, 400 MHz) δ : 7.86–7.80 (m, 1H, amide NH of Lys), 7.32 (d, J = 6.89 Hz, amide NH of Ser), 5.89–5.76 (m, 1H, OCH₂CH of Lys), 5.28–5.17 (m, 2H, OCH₂CHCH₂ of Lys), 4.77–4.71 (m, 1H, H α of Glu), 4.55 (d, J = 5.02 Hz, OCH₂ of Lys), 4.54–4.46 (m, 1H, H α of Lys), 4.44–4.33 (m, 1H, H α of Ser), 3.74–3.30 (m, 2H, H β of Ser), 3.06–2.94 (m, 2H, H ϵ of Lys), 2.41–1.97 (m, 2H, H β of Glu), 2.32–2.25 (m, 2H, H γ of Glu), 1.85–1.60 (m, 2Hm H δ of Lys), 1.46–1.40 (m, 2H, H γ of Lys), 1.36 (s, 18H, *Boc* of Lys and Glu), 1.31–1.26 (m, 2H, H β of Lys), 1.15 (s, 9H, *Boc* of Ser); ¹³C NMR (CDCl₃, 100 MHz) δ : 174.80 (ester C=O of Glu), 172.68 (ester C=O of Lys), 171.66 (amide C=O of Ser), 170.34 (amide C-O of Glu), 156.00 (*Boc* C=O of Lys), 131.61 (OCH₂CH of Lys), 61.38 (C β of Ser), 54.73 (C α of Ser), 52.77 (C α of Glu), 52.20 (C α of Lys), 40.23 (C ϵ of Lys), 32.06 (C δ of Lys), 31.92 (C γ of Glu), 30.32 (C γ of Lys), 29.52 (C β of Glu), 28.44 (3C, *Boc* of Lys), 28.09 (3C, *Boc* of Glu), 27.40 (3C, *Boc* of Ser), 22.43 (C β of Lys), which was similar to the literature data.¹

Boc-NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-OAll (10)

According to the method showed before, the title product was obtained as a white solid in 93 % yield (459.0 mg, 0.47 mmol) with flash column chromatography (MeOH:DCM = 2:98). Mp.: 164–166 °C.: ¹H NMR (CDCl₃, 400 MHz) δ: 7.42–7.28 (m, 2H, amide NH of Glu and Lys), 7.06 (d, J = 5.19 Hz, 1H, amide NH of Ser), 6.60–6.53 (m, 1H, Hγ of NLe), 6.53–6.46 (m, 1H, Hδ of NLe), 5.99 (ddt, J = 17.02, 10.56, 5.60 Hz, 1H, OCH₂CH of Lys), 5.69–5.55 (m, 1H, *Boc*-NH of Lys), 5.33 (dd, J = 17.24, 0.55 Hz, 1H, OCH₂CHCH₂ of Lys), 5.27–5.24 (m, 1H, *Boc*-NH of NLe), 5.26 (dd, J = 10.48, 1.13 Hz, 1H, OCH₂CHCH₂ of Lys), 4.63 (d, J = 4.88 Hz, 2H, OCH₂ of Lys), 4.61–4.57 (m, 1H, Hα of Lys), 4.47–4.37 (m, 2H, Hα of Ser and Glu), 4.37–4.23 (m, 1H, Hα of NLe), 3.83–3.36 (m, 2H, Hβ of Ser), 3.14–3.03 (m, 2H, Hε of Lys), 2.77–2.49 (m, 2H, Hβ of NLe), 2.48–2.35 (m, 2H, Hγ of Glu), 2.17–1.92 (m, 2H, Hβ of Glu), 1.91–1.58 (m, 2H, Hδ of Lys), 1.52–1.48 (m, 2H, Hγ of Lys), 1.45 (s, 9H, *Boc* of Lys), 1.44 (s, 9H, *Boc* of Glu), 1.43 (s, 9H, *Boc* of NLe),

1.37–1.31 (m, 2H, Hβ of Lys), 1.21 (s, 9H, *Boc* of Ser); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.22 (ester C=O of Glu), 171.56 (ester C=O of Lys), 170.53 (amide C=O of Ser), 170.47 (amide C=O of Glu), 169.85 (amide C=O of NLe), 155.94 (*Boc* C=O of Lys), 155.23 (*Boc* C=O of NLe), 144.08 (p, J = 23.66 Hz, Cδ of NLe), 133.38 (p, J = 3.37 Hz, Cγ of NLe), 131.55 (OCH₂CH of Lys), 123.39 (qp, J = 327.36, 49.70 Hz, CF3 of NLe), 118.87 (OCH₂CHCH₂ of Lys), 81.23 (*Boc*-C of Lys), 80.52 (*Boc*-C of NLe), 79.07 (*Boc*-C of Glu), 74.20 (*tBu*-C of Ser), 65.84 (OCH₂ of Lys), 61.07 (Cβ of Ser), 53.38 (Cα of Ser), 53.17 (Cα of Glu), 53.14 (Cα of NLe), 52.20 (Cα of Lys), 40.26 (Cε of Lys), 33.70 (Cβ of NLe), 31.98 (Cδ of Lys), 31.68 (Cγ of Glu), 29.50 (Cγ of Lys), 28.39 (3C, *Boc* of Lys), 28.20 (*Boc* of Glu), 28.01 (*Boc* of NLe), 27.81 (Cβ of Glu), 27.29 (*tBu* of Ser), 22.43 (Cβ of Lys); ¹⁹F NMR (CDCl3, 376 MHz) δ: 40.06 (qd, J = 24.49, 4.08 Hz, 4F, SF₄), – 64.12 (p, J = 24.25 Hz, 3F, CF₃); HRMS (DART-ESI, m/z) Calcd. For C₄₁H₆₉F₇N₅O₁₂S+: 990.4703(M+), Found: 990.4695.

Boc-NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-OH (11)

To a mixture of R (110.0 mg, 0.11 mmol) and Pd(PPh₃)₄ (25.0 mg, 0.022 mmol, 20 mol%) in THF (4.0 mL) was added N-ethylaniline (0.14 mL, 1.1 mmol, 10.0 eq.) at room temperature. After stirring for one hour, the reaction mixture was quenched with sat. NH₄Cl solution (5.0 mL), and extracted with AcOEt (3 x 5.0 mL). The combined organic phase was dried over MgSO4, and filtered and evaporated in vacuo. The title product was obtained as a white solid in 95 % yield (99.0 mg, 0.10 mmol) with flash column chromatography (MeOH:DCM = 2:98). Mp.: 109-111 °C.: ¹H NMR (CDCl₃, 400 MHz) δ : 7.51–7.39 (m, 2H, amide NH of Glu and Lys), 7.12 (d, J = 7.90 Hz, 1H, amide NH of Ser), 6.53–6.54 (m, 1H, Hy of NLe), 6.54–6.42 (m, 1H, Hδ of NLe), 6.63–6.42 (m, 4H, Hα of Lys, Ser, Glu and NLe), 3.80–3.46 (m, 2H, Hβ of Ser), 3.13–3.02 (m, 2H, Hε of Lys), 2.77–2.48 (m, 2H, Hβ of NLe), 2.44–2.33 (m, 2H, Hγ of Glu), 2.14–1.87 (m, 2H, Hβ of Glu), 1.78–1.57 (m, 2H, Hδ of Lys), 1.52–1.47 (m, 2H, Hγ of Lys), 1.44 (s, 18H, Boc of Lys and Glu), 1.43 (s, 9H, Boc of NLe), 1.28–1.23 (m, 2H, Hβ of Lys), 1.18 (s, 9H, Boc of Ser); ¹³C NMR (CDCl₃, 100 MHz) δ: 173.38 (ester C=O of Glu), 171.74 (amide C=O of Ser), 171.45 (amide C=O of Glu), 170.46 (amide C=O of NLe), 156.23 (acid C=O of Lys), 156.13 (Boc C-O of Lys), 155.52 (Boc C=O of NLe), 140.84 (p, J = 24.16 Hz, C\delta of NLe), 133.71 (p, J = 4.31 Hz, Cy of NLe), 123.40 (qp, J = 329.27, 51.31 Hz, CF₃ of NLe), 81.29 (Boc-C of Lys), 80.44 (Boc-C of NLe), 79.06 (Boc-C of Glu), 74.09 (tBu-C of Ser), 61.02 (CB of Ser), 53.67 (Cα of Ser), 53.18 (Cα of Glu), 53.06 (Cα of NLe), 52.79 (Cα of Lys), 40.30 (Cε of Lys), 33.62 (Cβ of NLe), 31.89 (Co of Lys), 31.70 (Cy of Glu), 29.67 (Cy of Lys), 28.39 (3C, Boc of Lys), 28.22 (3C, Boc of Glu), 28.03 (Cβ of Glu), 28.00 (3C, Boc of Nle), 27.30 (3C, tBu of Ser), 22.66 (Cβ of Lys); ¹⁹F NMR (CDCl₃, 376 MHz) δ : 40.09 (qd, J = 24.68, 4.84 Hz, 4F, SF₄), -64.16 (p, J = 24.35 Hz, 3F, CF₃); HRMS (DART-ESI, m/z) Calcd. For C₃₈H₆₅F₇N₅O₁₂S+: 948.4233(M+), Found: 948.4350.

Boc-NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-NLe(Tts)-Lys(Z)-Glu(OEt)-OEt (12)

For this coupling reaction, DMF was used as a solvent instead of THF, and the scale of the reaction was changed to 0.01 mmol. The title compound was obtained as a white solid in 78 yield (13.0 mg, 0.0078 mmol) with flash column chromatography (MeOH:DCM = 2:98).

HRMS (DART-ESI, m/z) Calcd. For C₆₇H₁₀₄F₁₄N₉O₁₉S₂+: 1668.6661(M+), Found: 1668.6654.

NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt (5)

To a mixture of TFA/triisopropylsilane/H₂O (95:2.5:2.5) was added S (8.0 mg, 0.0048 mmol, 1.0 eq.) at room temperature. After stirring for overnight, the mixture was evaporated in vacuo. The crude product was purified with flash column chromatography (MeOH:DCM = 1:10) to afford the title product (**5**) in 91 % yield (5.3 mg, 0.0044 mmol.

HRMS (DART-ESI, m/z) Calcd. For C₄₁H₆₆F₁₄N₉O₁₃S₂+: 1222.3992(M+), Found: 1222.3395.

2.3 Determination of the enantiomeric purity for the CF₃SF₄-substituted amino acid, Boc-NLe(Tts)-OH (3)

For determination of the enantiomeric purity, Mosher acid was used for the coupling reaction with the amino acid (**G**), *Boc*-NLe(Tts)-Lys(*Z*)-Glu(OEt)-OEt (**J**) and *Boc*-NLe(Tts)-Glu(O*tBu*)-Ser(*tBu*)-Lys(*Boc*)-OAll (**R**). The general procedure is below.

2-3-1. General procedure

To a mixture of an amino acid or peptide (0.1 mmol, 1.0 eq.) in DCM (0.6 mL) was added TFA (0.04 mL, 0.5 mmol, 5.0 eq.) at 0 °C. The reaction mixture was allowed to increase to room temperature. After the reaction was completed with monitoring with TLC, the mixture was concentrated *in vacuo*. To the round-bottom-flask contained the crude product was added DCM (1.0 mL), and then added (*R*)- α -methoxy- α -(trifluoromethyl)phenylacetic acid (Mosher acid) (28.0 mg, 0.12 mmol, 1.2 eq.), *N*,*N*'-dicyclohexylcarbodiimide (DCC) (24.0 mg, 0.12 mmol, 1.2 eq.) and 4-dimethylaminopyridine (DMAP) (2.0 mg, 0.015 mmol, 0.15 eq.) at room temperature. After stirring for overnight, the reaction mixture was quenched with sat. NaHCO₃ solution (3.0 mL) and extracted with AcOEt (3 x 3.0 mL). The combined organic phase was dried over Mg₂SO₄, and filtered and concentrated *in vacuo*. The crude product was compared with racemic product respectively in ¹⁹F NMR.

2-3-2. Analysis for the enantiomeric purity

The ¹⁹F NMR data for the amino acid methyl ester (**L**).

The ¹⁹F NMR data for the *Boc*-NLe(Tts)-Lys(Z)-Glu(OEt)-OEt (L)

The ¹⁹F NMR data for the *Boc*-NLe(Tts)-Glu(O'Bu)-Ser('Bu)-Lys(*Boc*)-OAll (Z)

S16 | Chemical Communications, 2018, 00, 1-3

References

1) Lim, D. S.; Lin, J.-H.; Welch, J. T. Eur. J. Org. Chem., 2012, 21, 3964-3954.

2) Krishnamurthy, S.; Arai, T.; Nakanishi, K.; Nishino, N. RSC Adv., 2014, 4, 2482-2490.

3) Schneider, H.; Sigmund, G.; Schricker, B.; Thirring, K.; Berner, H. J. Org. Chem., 1993, 58, 683-689.

4) (a) Myers, A. G.; Gleason, J. L. *Org. Synth.*, 1999, **76**, 57-66. (b) Saniere, L.; Leman, L.; Bourguignon, J.-J.; Dauban, P.; Dodd, R. H. *Tetrahedron*, 2004, **60**(28), 5889-5897.

5) (a) Luebke, M.; Jung, M.; Haufe, G. *J. Fluorine Chem.*, 2013, **152**, 144-156. (b) Allen, N. E.; Boyd, D. B.; Campbell J. B.; Deeter, J. B.; Elzey, T. K.; Foster, B. J.; Hatfield, L. D.; Hobbs, J. N., Jr.; Hormback, W. J. *Tetrahedron*, 1989, **45**, 1905-1928.

6) (a) Li, S.-G.; Portela-Cubillo, F.; Zard, S.Z. *Org. Lett.*, 2016, **18**, 1888-1891. (b) Dondoni, A.; Massi, A.; Minghini, E.; Bertolasi, V. *Tetrahedron*, 2004, **60**, 2311-2326.

2.4 NMR structure determination

2-4-1a *Boc*-NLe(Tts)-Glu(OtBu)-Ser(tBu)-Lys(Boc)-NLe(Tts)-Lys(Z)-Glu(OEt)-OEt

Proto	n assignr	nents				30	3.201	K6
						31	7.725	E7
Resonance	Shift ^a	Residue	13	1.234	S 3	32	5.152	K6
1	7.645	TtsV1	13	1.234	S3	32	5.116	K6
2	4.799	TtsV1	13	1.234	S3	33	4.749	E7
3	2.834	TtsV1	13	1.234	S3	34	7.372	K6
3	2.651	TtsV1	13	1.234	S3	34	7.372	K6
4	6.599	TtsV1	13	1.234	S 3	35	2.031	E7
5	6.481	TtsV1	14	7.359	K4	35	2.199	E7
5	7.577	E2	15	4.417	K4	36	7.372	K6
6	4.787	E2	16	2.736	K4	36	7.372	K6
7	2.416	E2	16	2.566	K4	38	2.774	E7
7	2.202	E2	17	1.558	K4	38	2.619	E7
8	3.087	E2	17	1.436	K4	37	7.372	K6
8	2.981	E2	18	1.894	K4	39	4.180	E7
9	1.278	E2	18	1.791	K4	39	4.180	E7
9	1.278	E2	19	3.212	K4	40	1.173	E7
9	1.278	E2	20	7.949	TtsV5	40	1.173	E7
9	1.278	E2	21	4.796	TtsV5	40	1.173	E7
9	1.278	E2	22	2.654	TtsV5	43	1.278	K4
9	1.278	E2	22	2.834	TtsV5	43	1.278	K4
9	1.278	E2	23	6.601	TtsV5	43	1.278	K4
9	1.278	E2	24	6.481	TtsV5	43	1.278	K4
9	1.278	E2	25	7.219	K6	43	1.278	K4
10	7.144	S3	26	4.475	K6	43	1.278	K4
11	4.554	S3	27	2.439	K6	43	1.278	K4
12	3.799	S3	27	2.114	K6	43	1.278	K4
12	3.426	S3	28	1.427	K6	43	1.278	K4
13	1.234	S3	28	1.553	K6	41	5.277	K6
13	1.234	S3	29	1.784	K6	42	5.333	K4
13	1.234	S3	29	1.861	K6			

^a in ppm.

Amino acid	Backbone angle	Torsional	angle range
2 E2	PHI	-106.6	-82.4
2 E2	PSI	96.9	151.4
3 S3	PHI	-140.2	-31.0
3 S3	PSI	73.8	192.2
4 K4	PHI	-104.0	-65.0
4 K4	PSI	-48.7	-26.4
5 TTSV2	PHI	-180.2	-89.1
5 TTSV2	PSI	118.3	185.6
6 K6	PHI	-105.5	-42.4
6 K6	PSI	-50.1	-13.4

2-4-1b Backbone torsional angles from TALOS

2-4-1c Sidechain torsional angles from Cyana.

Torsional angles	Amino acid residue	angle	Torsional	angle range
1	1 TTSV1	CHI1	-90.0	210.0
2	1 TTSV1	CHI1	-330.0	-30.0
3	1 TTSV1	CHI1	-210.0	90.0
4	2 E2	CHI1	-90.0	210.0
5	2 E2	CHI1	-330.0	-30.0
6	2 E2	CHI1	-210.0	90.0
7	2 E2	CHI2	-90.0	210.0
8	2 E2	CHI2	-330.0	-30.0
9	2 E2	CHI2	-210.0	90.0
10	3 S3	CHI1	-90.0	210.0
11	3 \$3	CHI1	-330.0	-30.0
12	3 \$3	CHI1	-210.0	90.0
13	4 K4	CHI1	-90.0	210.0
14	4 K4	CHI1	-330.0	-30.0
15	4 K4	CHI1	-210.0	90.0
16	4 K4	CHI2	-90.0	210.0
17	4 K4	CHI2	-330.0	-30.0
18	4 K4	CHI2	-210.0	90.0
19	4 K4	CHI3	-90.0	210.0
20	4 K4	CHI3	-330.0	-30.0
21	4 K4	CHI3	-210.0	90.0
22	4 K4	CHI4	-90.0	210.0
23	4 K4	CHI4	-330.0	-30.0
24	4 K4	CHI4	-210.0	90.0
25	5 TTSV2	CHI1	-90.0	210.0
26	5 TTSV2	CHI1	-330.0	-30.0
27	5 TTSV2	CHI1	-210.0	90.0
28	6 K6	CHI1	-90.0	210.0
29	6 K6	CHI1	-330.0	-30.0
30	6 K6	CHI1	-210.0	90.0
31	6 K6	CHI2	-90.0	210.0
32	6 K6	CHI2	-330.0	-30.0
33	6 K6	CHI2	-210.0	90.0
34	6 K6	CHI3	-90.0	210.0
35	6 K6	CHI3	-330.0	-30.0
36	6 K6	CHI3	-210.0	90.0
37	6 K6	CHI4	-90.0	210.0
38	6 K6	CHI4	-330.0	-30.0
39	6 K6	CHI4	-210.0	90.0
40	7 E7	CHI1	-90.0	210.0
41	7 E7	CHI1	-330.0	-30.0
42	7 E7	CHI1	-210.0	90.0
43	7 E7	CHI2	-90.0	210.0
44	7 E7	CHI2	-330.0	-30.0
45	7 E7	CHI2	-210.0	90.0

2-4-1d Significant NOE Relationships

Blue-amide proton interactions

Red-CF₃SF₄ side chain interactions

Black-other significant interactions

2-4-2a. NLe(Tts)-Glu-Ser-Lys-NLe(Tts)-Lys-Glu(OEt)-OEt

Proton assignments

Resonance	Shift ^a	Residue	17	1.287	K4
1	9.700	TtsV1	16	1.528	K4
2	4.563	TtsV1	16	1.654	K4
3	2.710	TtsV1	20	9.603	TtsV5
3	2.547	TtsV1	21	4.568	TtsV5
4	6.590	TtsV1	22	2.714	TtsV5
5	6.973	TtsV1	22	2.549	TtsV5
6	7.351	E2	24	6.951	TtsV5
7	5.330	E2	25	8.281	K6
9	2.743	E2	26	4.231	K6
8	1.986	E2	27	1.647	K6
8	1.275	E2	27	1.531	K6
10	8.367	S3	30	2.361	K6
11	4.232	S3	29	1.994	K6
12	1.980	S3	28	1.818	K6
12	1.821	S3	31	7.716	E7
14	8.294	K4	32	4.889	E7
15	4.236	K4	33	3.003	E7
19	2.963	K4	34	1.355	E7
18	1.401	K4	34	1.233	E7

Torsional angles	Amino acid residue	angle	Torsional ang	gle range
1	1 TtsV1	CHI1	-90.0	210.0
2	1 TtsV1	CHI1	-330.0	-30.0
3	1 TtsV1	CHI1	-210.0	90.0
4	2 E2	CHI1	-90.0	210.0
5	2 E2	CHI1	-330.0	-30.0
6	2 E2	CHI1	-210.0	90.0
7	2 E2	CHI2	-90.0	210.0
8	2 E2	CHI2	-330.0	-30.0
9	2 E2	CHI2	-210.0	90.0
10	3 S3	CHI1	-90.0	210.0
11	3 S3	CHI1	-330.0	-30.0
12	3 S3	CHI1	-210.0	90.0
13	4 K4	CHI1	-90.0	210.0
14	4 K4	CHI1	-330.0	-30.0
15	4 K4	CHI1	-210.0	90.0
16	4 K4	CHI2	-90.0	210.0
17	4 K4	CHI2	-330.0	-30.0
18	4 K4	CHI2	-210.0	90.0
19	4 K4	CHI3	-90.0	210.0
20	4 K4	CHI3	-330.0	-30.0
21	4 K4	CHI3	-210.0	90.0
22	4 K4	CHI4	-90.0	210.0
23	4 K4	CHI4	-330.0	-30.0
24	4 K4	CHI4	-210.0	90.0
25	5 TtsV5	CHI1	-90.0	210.0
26	5 TtsV5	CHI1	-330.0	-30.0
27	5 TtsV5	CHI1	-210.0	90.0
28	6 K 6	CHI1	-90.0	210.0
29	6 K6	CHI1	-330.0	-30.0
30	6 K6	CHI1	-210.0	90.0
31	6 K6	CHI2	-90.0	210.0
32	6 K 6	CHI2	-330.0	-30.0
33	6 K6	CHI2	-210.0	90.0
34	6 K6	CHI3	-90.0	210.0
35	6 K 6	CHI3	-330.0	-30.0
36	6 K6	CHI3	-210.0	90.0
37	6 K6	CHI4	-90.0	210.0
38	6 K 6	CHI4	-330.0	-30.0
39	6 K 6	CHI4	-210.0	90.0
40	7 E7	CHI1	-90.0	210.0
41	7 E7	CHI1	-330.0	-30.0
42	7 E7	CHI1	-210.0	90.0
43	7 E7	CHI2	-90.0	210.0
44	7 E7	CHI2	-330.0	-30.0
45	7 E7	CHI2	-210.0	90.0

2-4-2b. Sidechain torsional angles from Cyana

COMMUNICATION

2-4-2c NOE Relationships

Blue-amide proton interactions

Red-CF $_3$ SF $_4$ side chain interactions

Organic and Biomolecular Chemistry

Supporting Figures Spectra.

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, **00**, 1-3 | S**25**

Please do not adjust margins

Boc-N CO₂Et

Α

This journal is © The Royal Society of Chemistry 20xx

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S27

S28 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S29

S30 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S31

S32 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, **00**, 1-3 |S**33**

S34 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S35

S36 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S37

Please do not adjust margins

COMMUNICATION

Electronic Supplementary Information

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 fl (ppm)

Boc-N, CO₂H

2

S38 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S39

S40 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S41

S42 | Chemical Communications, 2018, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S43

S44 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S45

S46 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S47

S48 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S49

S50 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S51

Chemical Communications, 2018, 00, 1-3 | S53

S54 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S55

Chemical Communications, 2018, 00, 1-3 |S57

S58 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S59

S60 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S61

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 f1 (ppm)

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S63

S64 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S65

S66 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 |S67

S68 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Electronic Supplementary Information

Protected heptapeptide

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S69

Please do not adjust margins

Electronic Supplementary Information

COMMUNICATION

S70 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S71

Please do not adjust margins

S72 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx
Electronic Supplementary Information

COMMUNICATION

ROESY

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S73

Please do not adjust margins

S74 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S75

Electronic Supplementary Information

COMMUNICATION

S76 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Electronic Supplementary Information

COMMUNICATION

ROESY cross peaks identified in CARA for deprotected heptapeptide

This journal is © The Royal Society of Chemistry 20xx

Chemical Communications, 2018, 00, 1-3 | S77

S78 | Chemical Communications, 2018, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx