Synthesis of Tri(di)fluoroethylanilines via Copper-Catalyzed Coupling

Reaction of Tri(di)fluoroethylamine with (Hetero)aromatic Bromides

Suo Chen^{ab+}, Hui Wang ^{ab+}, Wei Jiang^c, Pei-Xin Rui^a, Xiang-Guo Hu^{ab*}

National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang,330022, China. Email: <u>huxiangg@iccas.ac.cn</u>

1. General information	2
2. General procedures	2
3. Optimization of reactions	4
4. Characterization data of Compounds	10
5. X-ray structures of 7f and 9e	22
6. Reference	22
7. NMR spectra of novel compounds	23

1. General information

All purchased reagents were used without further purification unless otherwise noted. All solvents were dried over activated 4Å molecular sieves. Analytical TLC was performed with 0.2 mm silica gel 60 F plates with 254 nm fluorescent indicator. TLC plates were visualized by ultraviolet light or by treatment with a spray off Pancaldi reagent {Ce(SO₄)₂}. Column chromatograph was performed on 200-300 mesh silica gal. NMR spectra were measured in CDCl₃ (TMS, ¹H δ = 0; CDCl₃, ¹H δ = 7.26, ¹³C δ = 77.16) (¹H at 400 MHz, ¹³C at 100 MHz, ¹⁹F at 376 MHz) magnetic resonance spectrometer Chemical shifs (δ) are reported in ppm, and coupling constants (*J*) are in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. What should be noted is that all petroleum ether and ethyl acetate (EtOAc) used for flash column chromatography were redistilled twice before using, but the trace amount of residue of impurities such as H-grease and silicone grease could still be seen on NMR spectra of some products. *All the reactions were conducted in high pressure bottles with PTFE thread(resist 6 atm pressure) under the protection of a safety shield. In all the experiments, the solvent should never exceed the half volume of the high pressure bottle.*

2. General procedures

The general procedure for the Reaction of 2(6) with different bromobenzenes: A 10 mL high pressure bottle equipped with a magnetic stir bar was charged with bromobenzenes (0.5 mmol, 1 equiv), Cu₂O (7.1 mg, 0.05 mmol, 10 mol%), L14 (21.0 mg, 0.05 mmol, 10 mol%), K₂CO₃ (103.6mg, 0.75 mmol, 1.50 equiv), **2** (200 μ L, 2.5 mmol, 5 equiv) [**6**, (70 μ L, 1.0 mmol, 2 equiv)] and MeOH (2.0 mL). The reaction mixture was heated at 120 °C (**6**, 100°C) for 24 h under vigorous stirring. After removal of the solvent under vacuum, the residue was purified by column chromatography.

Gram-scale synthesis procedure: a 100 mL high pressure bottle equipped with a magnetic stir bar was charged with 1-bromo-4-methoxybenzene (6 mmol, 1.0 equiv), Cu₂O (42.9 mg, 0.3 mmol, 5 mol%), L14 (126.1 mg, 0.3 mmol, 5 mol%), K₂CO₃ (1.24 g, 9 mmol, 1.5 equiv), CF₂HCH₂NH₂ (0.85 mL, 12 mmol, 2 equiv) and MeOH (24 mL). The reaction mixture was heated at 100 °C for 24 h under vigorous stirring. After removal of the solvent under vacuum, the residue was purified by column chromatography.

The procedure for competition reactions: A 10 mL high pressure bottle equipped with a magnetic stir bar was charged with bromobenzene (0.25 mmol, 1 equiv), Cu₂O (7.1 mg, 0.05 mmol, 20 mol%), L14 (21.0 mg, 0.05 mmol, 20 mol%), K₂CO₃ (52 mg, 0.375 mmol, 1.5 equiv), CF₃CH₂NH₂ (20 μ L, 0.25 mmol, 1 equiv) or CF₂HCH₂NH₂ (17.5 μ L, 0.25 mmol, 1 equiv) or 2-phenylethan-1-amine (31.5 μ L, 0.25 mmol, 1 equiv) and MeOH (1.0 mL). The reaction mixture was heated at 120 °C for 24 h under vigorous stirring. After removal of the solvent under vacuum, the ratio of the products is determined by the ¹H NMR.

3. Optimization of reactions

Ρ	h 1a	3r + F ₃ C	NH ₂ b 2 4Å	Cu salt ase, solvent, MS,overnigl	→ ht Ph	J H C J A	CF ₃
CN H La	соон		→ H ₂ N → I	NH ₂	HO Ld	`он	OH
OH O Lf	NEt ₂	Ph Lg	NHBn II O	Lh	соон		
entry	Cu	Ligand	Base	solvent	T(℃)	Time(h)	Yield(%)
11	CuI	La	K ₂ CO ₃	DMSO	rt	17	0
2	CuI	Lb	^t BuOK	tuluene	115	3.5	0
3	CuI	Le	K ₃ PO ₄	dioxane	110	24	0
4	CuI	Ld	K ₃ PO ₄	ⁱ PrOH	90	24	0
5 ²	CuI	Le	Cs ₂ CO ₃	^t BuOH	100	16	0
6 ³	CuI	Lf	K ₃ PO ₄	DMF	90	22	0
74	CuI	Lg	K ₃ PO ₄	DMF	90	24	0
85	CuI	Lh	K ₂ CO ₃	DMF	110	24	0
9 ⁶	CuI	Li	K ₃ PO ₄	DMSO	120	24	10

 Table 1 Synthesis of fluoroalkylamine following relevant literatures.

Condition: **1a** (0.25 mmol, 1 equiv), CF₃CH₂NH₂ (1.25 mmol, 5 equiv), CuI (0.05 mmol, 20 mol%), ligands (0.05 mmol, 20 mol%), bases (0,38 mmol, 1.5 equiv), 4Å MS, solvents (1.0 mL), T= 120 °C, 24 h. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Ph 1 equiv	+ F ₃ C NH ₂	Cul, Li K ₃ PO ₄ , solvent 120°C, 4Å MS	[†] √_CF:
	solvent	Yield(%)	
	DMSO	10%	
	DMSO(4Å MS)	20%	
	DMF	trace	
	MeCN	0	
	dioxane	0	
	DCE	0	
	toluene	0	
	NMP	0	
	МеОН	57%	
	EtOH	8%	
	ⁱ PrOH	trace	
	^t BuOH	0	
	THF	0	
	acetone	trace	
	HFIP	trace	

Table 2 The effect of solvents

Condition: **1a** (0.25 mmol, 1 equiv), CF₃CH₂NH₂ (1.25 mmol, 5 equiv), CuI (0.05 mmol, 20 mol%), Li (0.05 mmol, 20 mol%), K₃PO₄ (0,38 mmol, 1.5 equiv), 4Å MS, solvents (1.0 mL), T= 120 °C, 24 h. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Condition: **1a** (0.25 mmol, 1 equiv), CF₃CH₂NH₂ (1.25 mmol, 5 equiv), CuI (0.05 mmol, 20 mol%), L (0.05 mmol, 20 mol%), MeOH (1.0 mL), T= 120 °C, K₃PO₄ (0,38 mmol, 1.5 equiv), 4Å MS, 24 h. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table 4 the effect of the base		
base	Yield(%)	
Cs ₂ CO ₃	70%	
K ₂ CO ₃	75%	
Na ₂ CO ₃	48%	
K ₃ PO ₄	57%	
NaOAc	0	
TEA	0	
^t BuONa	71%	
TBAF(THF, 1 M)	66%	

Condition: **1a** (0.25 mmol, 1 equiv), CF₃CH₂NH₂ (1.25 mmol, 5 equiv), CuI (0.05 mmol, 20 mol%), L14 (0.05 mmol, 20 mol%), MeOH (1.0 mL), T= 120 °C, bases (0,38 mmol, 1.5 equiv), 4Å MS, 24 h. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table 5 Evaluation of different copper salts			
Cu salts	Yield(%)		
CuI	69%		
CuCl	78%		
Cu ₂ O	90%		
CuCN	64%		
CuCl ₂	64%		
Cu(OAc) ₂	53%		
CuBr ₂	42%		
Cu(acac) ₂	62%		
Cu(OTf) ₂	68%		
CuBr	60%		

Condition: **1a** (0.25 mmol, 1 equiv), $CF_3CH_2NH_2$ (1.25 mmol, 5 equiv), Cu salts (0.05 mmol, 20 mol%), L14 (0.05 mmol, 20 mol%), MeOH (1.0 mL), T= 120 °C, K₂CO₃ (0,38 mmol, 1.5 equiv), 4Å MS, 24 h. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

entry	T (°C)	CF ₃ CH ₂ NH ₂ (equiv)	yield ^a
1	80	5	0
2	90	5	0
3	100	5	3%
4	110	5	66%
5	120	5	90%
6	120	2	76%
7	120	5	93% ^b

Table 6 The effect of temperature and the equivalent of CF₃CH₂NH₂

Condition: Condition: **1a** (0.25 mmol, 1 equiv), **2** (X equiv), Cu₂O (0.05 mmol, 20 mol%), L14 (0.05 mmol, 20 mol%), MeOH (1.0 mL), T, K₂CO₃ (0,38 mmol, 1.5 equiv), 4Å MS, 24 h. a.Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard; b. no 4Å MS.

Enters	T (°O)	HCE CH NIL (aquiv)	Viald
Entry	1(0)	$HCF_2CH_2NH_2(equiv)$	Y leid
1	80	2	65%
2	90	2	81%
3	100	2	90%
4	100	5	95%
5	120	2	90%

Table 7 The effect of temperature and the equivalent of HCF₂CH₂NH₂

Condition: **1a** (0.25 mmol, 1 equiv), **6** (X equiv), Cu_2O (0.05 mmol, 20 mol%), L14 (0.05 mmol, 20 mol%), MeOH (1.0 mL), T, K_2CO_3 (0,38 mmol, 1.5 equiv), 4Å MS, 24 h. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Entry	Variation conditions	Yield(%)
1	4Å MS	90%
2	no 4Å MS	93%
3	2 equiv H ₂ O	91%
4	no 2 equiv H ₂ O	95%
5	Untreated MeOH	95%

Table 8 The effect of water on the reaction

Condition: **1a** (0.25 mmol, 1 equiv), $CF_3CH_2NH_2$ (1.25 mmol, 5 equiv), Cu_2O (0.05 mmol, 20 mol%), L14 (0.05 mmol, 20 mol%), MeOH (1.0 mL), T= 120 °C, K_2CO_3 (0,38 mmol, 1.5 equiv), 24 h. Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

4. Characterization data of Compounds

N-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-4-amine (3a)

Purified by flash column chromatography (petroleum ether/AcOEt = 100:1), white solid (111.8 mg, 89% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.56 (m, 2H), 7.52 (d, J = 8.6 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.40 - 7.30 (m, 1H), 6.92 - 6.67 (m, 2H), 3.85 (s, 1H), 3.82 (q, J = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 140.9, 132.1, 128.8, 128.2, 126.56, 126.53, 125.2 (q, *J* = 280.2 Hz), 113.5,

46.0 (q, J = 33.8 Hz). (Consistent with previous reported values⁷.)

4-methoxy-*N*-(2,2,2-trifluoroethyl)aniline (3b)

Purified by flash column chromatography (petroleum ether/AcOEt = 50:1), pale yellow liquid (90.3 mg, 88% yield); ¹H NMR (400 MHz, $CDCl_3$) δ 6.83 (d, J = 9.0 Hz, 2H), 6.67 (d, J = 8.9 Hz, 2H), 3.77 (s, 3H),

3.71 (q, J = 9.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 140.4, 125.3 (q, J = 279.9 Hz), 115.0, 114.8, 55.7, 47.1 (q, J = 33.0 Hz). (Consistent with previous reported values⁷.)

1-(4-((2,2,2-trifluoroethyl)amino)phenyl)ethan-1-one (3c)

Purified by flash column chromatography (petroleum ether/AcOEt = 10:1), white solid (93.1 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 4.76 (s, 1H), 3.94 -

3.68 (m, 2H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 150.5, 130.9, 128.5, 124.8 (q, J = 280.2 Hz), 112.1, 45.3 (q, J = 34.1 Hz), 26.3. (Consistent with previous reported values⁸.)

N-(2,2,2-trifluoroethyl)-4-(trifluoromethyl)aniline (3d)

Purified by flash column chromatography (petroleum ether/AcOEt = 50:1), colorless and transparent liquid (84 mg, 69% yield); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.46 \text{ (d, } J = 8.5 \text{ Hz}, 2\text{H}), 6.72 \text{ (d, } J = 8.5 \text{ Hz}, 2\text{H}),$ 4.21 (s, 1H), 3.81 (q, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 126.9 (q, J = 3.8 Hz), 124.9 (q, J = 280.4 Hz), 124.8 (q, J = 270.0 Hz), 121.0 (q, J = 32.7 Hz), 112.5, 45.5 (q, J = 34.0 Hz). (Consistent with previous reported values⁷.)

4-((2,2,2-trifluoroethyl)amino)benzonitrile (3e)

Purified by flash column chromatography (petroleum ether/AcOEt = 10:1), white solid (74 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.8 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 4.64 (s, 1H), 3.82 (dq, J = 8.0, 6.2 Hz, 2H; ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 133.9, 124.7 (q, J = 280.3 Hz), 120.0, 112.9, 101.0, 45.1 (q, J = 34.3 Hz). (Consistent with previous reported values⁸.)

4-nitro-*N*-(2,2,2-trifluoroethyl)aniline (3f)

Purified by flash column chromatography (petroleum ether / AcOEt = 5:1), yellow solid (64.9 mg, 59% yield), m.p. 113-114 °C; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.12 \text{ (d}, J = 9.2 \text{ Hz}, 2\text{H}), 6.69 \text{ (d}, J = 9.2 \text{ Hz}, 2\text{H}),$

4.84 (s, 1H), 4.04 – 3.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 139.8, 126.4, 124.5 (q, J = 280.3 Hz), 112.0, 45.2 (q, J = 34.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.05 (t, J = 8.7 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.05 (s); HRMS (ESI): calcd. for C₈H₈F₃N₂O₂⁺ [M+H]⁺ 221.0532, found 221.0524.

2-((2,2,2-trifluoroethyl)amino)benzonitrile (3g)

Purified by flash column chromatography (petroleum ether/AcOEt = 10:1), white solid (42.8 mg, 43% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (ddd, J = 7.4, 4.4, 2.6 Hz, 2H), 6.87 - 6.75 (m, 2H), 4.94 (s, 1H), 3.88 (qd, J)

= 8.7, 6.9 Hz, 2H); ¹³C NMR (100MHz, CDCl₃) δ 148.8, 134.5, 133.0, 124.6 (q, J = 280.3 Hz), 118.7, 117.4, 111.0 (q, J = 1.6 Hz), 97.3, 45.2 (q, J = 34.6 Hz). (Consistent with previous reported values8.)

3-nitro-N-(2,2,2-trifluoroethyl)aniline (3h)

Purified by flash column chromatography (petroleum ether / Dichloromethane = 5:1), yellow solid (103.6 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 8.1, 2.1 Hz, 1H), 7.51 (t, J = 2.3 Hz,

1H), 7.35 (t, J = 8.1 Hz, 1H), 6.98 (dd, J = 8.2, 2.5 Hz, 1H), 4.36 (s, 1H), 3.85 (q, J = 9.1 Hz, 2H);
¹³C NMR (100 MHz, CDCl₃) δ 149.4, 147.2, 130.2, 124.8 (q, J = 280.1 Hz), 119.1, 113.9, 107.1,
45.7 (q, J = 34.2 Hz). (Consistent with previous reported values⁷.)

N-(2,2,2-trifluoroethyl)naphthalen-2-amine (3i)

Purified by flash column chromatography (petroleum ether/AcOEt = 50:1), white solid (105.4 mg, 93% yield), m.p. 96-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.62 (m, 3H), 7.45 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H),

7.31 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 6.99 – 6.87 (m, 2H), 4.00 (s, 1H), 3.87 (q, J = 9.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 134.9, 129.4, 128.3, 127.8, 126.7, 126.3, 125.2 (q, J = 280.4 Hz), 123.0, 117.5, 105.7, 46.1 (q, J = 33.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -71.97 (t, J = 8.9 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -71.97 (s); HRMS (ESI): calcd. for C₁₂H₁₁F₃N⁺ [M+H]⁺ 226.0838, found 226.0832.

N-(2,2,2-trifluoroethyl)-9*H*-fluoren-2-amine (3j)

Purified by flash column chromatography (petroleum ether/AcOEt = 50:1), white solid (131.6 mg, 92% yield), m.p. 119-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 8.2

Hz, 1H), 7.49 (d, J = 7.4 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.23 (td, J = 7.4, 1.2 Hz, 1H), 6.88 (d, J = 2.2 Hz, 1H), 6.71 (dd, J = 8.3, 2.2 Hz, 1H), 3.99 (s, 1H), 3.89 – 3.74 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 145.4, 142.4, 142.0, 133.7, 126.8, 125.4, 125.2 (q, J = 280.1 Hz), 124.9, 120.8, 118.9, 112.5, 109.9, 46.5 (q, J = 33.4 Hz), 37.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.19 (t, J = 8.8 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.19 (s); HRMS (ESI): calcd. for C₁₅H₁₃F₃N⁺ [M+H]⁺ 264.0995, found 264.0988.

3,5-dimethoxy-N-(2,2,2-trifluoroethyl)aniline (3k)

Purified by flash column chromatography (petroleum ether/AcOEt = 20:1), colorless liquid (102.3 mg, 87% yield); ¹H NMR (400 MHz, CDCl₃) δ 5.97 (s, 1H), 5.86 (d, J = 2.0 Hz, 2H), 3.76 (s, 6H), 3.75 – 3.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 148.4, 125.0 (q, J =

279.9 Hz), 92.2, 91.2, 55.3, 46.1 (q, J = 33.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.28 (t, J = 8.9 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.28(s); HRMS (ESI): calcd. for C₁₀H₁₃F₃NO₂⁺ [M+H]⁺ 236.0893, found 236.0888.

N-(2,2,2-trifluoroethyl)-3,5-bis(trifluoromethyl)aniline (31)

Purified by flash column chromatography (petroleum ether/AcOEt = 50:1), pale yellow liquid (113.4 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 7.06 (s, 2H), 4.40 (s, 1H), 3.85 (q, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 131.9 (q, *J* = 33.0 Hz), 123.7

(q, J = 280.5 Hz), 122.5 (q, J = 272.7 Hz), 111.6 (d, J = 4.1 Hz), 111.52 – 111.27 (m), 44.57 (q, J = 34.3 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.30(s) , -72.22 (t, J = 8.8 Hz); ¹⁹**F {¹H} NMR** (376 MHz, CDCl₃) δ -63.30(s) , -72.22(s) ; **HRMS (ESI)**: calcd. for C₁₀H₇F₉N⁺ [M+H]⁺ 312.0429, found 312.0426.

N-(2,2-difluoroethyl)-[1,1'-biphenyl]-4-amine (7a)

Purified by flash column chromatography (petroleum ether/AcOEt = 100:1), white solid (100.3 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H),

7.33 – 7.23 (m, 1H), 6.79 (d, J = 8.2 Hz, 2H), 5.98 (tt, J = 56.0, 4.1 Hz, 1H), 3.60 (td, J = 14.3, 4.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 140.9, 132.3, 128.9, 128.2, 126.58, 126.56, 114.5 (t, J = 240.8 Hz), 113.9, 46.8 (t, J = 26.1 Hz). (Consistent with previous reported values⁹.)

N-(2,2-difluoroethyl)-4-methoxyaniline (7b)

Purified by flash column chromatography (petroleum ether / EtOAc = 50:1), pale yellow liquid (87.8 mg, 93% yield); ¹H NMR (400 MHz,

 $CDCl_3$) δ 6.80 (d, J = 8.9 Hz, 2H), 6.64 (d, J = 8.9 Hz, 2H), 5.91 (tt, J = 56.2, 4.3 Hz, 1H), 3.76 (s, 3H), 3.48 (td, J = 14.4, 4.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 140.9, 115.2, 114.9 (t, J = 240.5 Hz), 114.8, 55.9, 47.7 (t, J = 25.7 Hz). (Consistent with previous reported values⁸.)

1-(4-((2,2-difluoroethyl)amino)phenyl)ethan-1-one (7c)

Purified by flash column chromatography (petroleum ether / EtOAc = 5:1), white solid (77.1 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.8 Hz, 2H), 6.64 (d, J = 8.8 Hz, 2H), 5.92 (tt, J = 55.8, 4.0 Hz, 1H), 4.39 (s, 1H), 3.61 (td, J = 14.5, 4.0 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

196.7, 151.2, 130.9, 127.9, 114.2 (t, J = 241.0 Hz), 111.9, 45.7 (t, J = 26.0 Hz), 26.1. (Consistent with previous reported values⁹.)

N-(2,2-difluoroethyl)-4-(trifluoromethyl)aniline (7d)

Purified by flash column chromatography (petroleum ether / EtOAc = 50:1), tawny liquid (85 mg, 75% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.4 Hz, 2H), 5.92 (tt, J = 55.8,

4.0 Hz, 1H), 4.21 (s, 1H), 3.59 (tdd, J = 14.5, 6.7, 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 127.0 (q, J = 3.8 Hz), 124.9 (q, J = 270.4 Hz), 120.4 (q, J = 32.8 Hz), 114.3 (t, J = 242.3 Hz), 112.4, 46.0 (t, J = 26.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.27 (s), -122.67 (dt, J = 55.8, 14.5 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -61.27 (s) , -122.67 (s) ; HRMS (ESI): calcd. for $C_9H_9F_5N^+$ [M+H]⁺ 226.0650, found 226.0643.

4-((2,2-difluoroethyl)amino)benzonitrile (7e)

Purified by flash column chromatography (petroleum ether / EtOAc =8:1), white solid (66 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 5.92 (tt, J = 55.6, 3.9

Hz, 1H), 4.36 (s, 1H), 3.60 (td, J = 14.5, 3.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 134.0, 120.0, 114.0 (t, J=241.2 Hz), 112.7, 100.8, 45.6 (t, J=25.8 Hz). (Consistent with previous reported values⁸.)

*N-(*2,2-difluoroethyl)-4-nitroaniline (7f)

Purified by flash column chromatography (petroleum ether / EtOAc = N. ∠CE₂H 5:1), yellow solid (42.4 mg, 42% yield), m.p. 110-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 9.2 Hz, 2H), 6.64 (d, J = 9.2 Hz, 2H), 5.95 (tt, *J* = 55.5, 3.8 Hz, 1H), 4.80 (t, *J* = 6.7 Hz, 1H), 3.66 (tdd, *J* = 14.6, 6.6, 3.8 Hz, 2H); ¹³C NMR (100MHz, CDCl₃) δ 152.5, 139.2, 126.5, 114.0 (t, *J* = 242.8 Hz), 111.7, 45.7 (t, *J* = 25.9

Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.51 (dt, J = 55.7, 14.6 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.51 (s); **HRMS (ESI)**: calcd. for C₈H₉F₂N₂O₂⁺ [M+H]⁺ 203.0627, found 203.0626.

2-((2,2-difluoroethyl)amino)benzonitrile (7g)

Purified by flash column chromatography (petroleum ether/AcOEt = 10:1), colorless and transparent liquid (47.2 mg, 51% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (ddd, J = 8.1, 6.7, 1.7 Hz, 2H), 6.88 – 6.63 (m, 2H), 5.93 (tt, J = 55.6, 4.0 Hz, 1H), 4.78 (s, 1H), 3.66 (td, J = 14.2, 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 134.5, 133.2, 118.2, 114.2 (t, J = 243.0 Hz), 110.8, 97.1, 45.8 (t, J = 26.6 Hz); ¹⁹F NMR (376) MHz, CDCl₃) δ -122.17 (dt, J = 55.5, 14.2 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.17 (s); **HRMS (ESI)**: calcd. for $C_9H_9F_2N_2^+$ [M+H]⁺ 183.0728, found 183.0727.

N-(2,2-difluoroethyl)-3-nitroaniline (7h)

Purified by flash column chromatography (petroleum ether / EtOAc = 10:1), yellow solid (92.4 mg, 90% yield); ¹H NMR (400 MHz, $CDCl_3$) δ 7.67 – 7.55 (m, 1H), 7.48 (t, J = 2.3 Hz, 1H), 7.33 (t, J = 8.2

Hz, 1H), 6.95 (dd, J = 8.0, 2.4 Hz, 1H), 5.95 (tt, J = 55.7, 3.9 Hz, 1H), 4.25 (s, 1H), 3.63 (dddd, J = 10.0 Hz)14.6, 10.7, 6.7, 3.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 147.9, 130.2, 119.2, 114.2 (t, J = 242.4 Hz), 113.5, 106.8, 46.2 (t, J = 25.8 Hz). (Consistent with previous reported values⁹.)

N-(2,2-difluoroethyl)naphthalen-2-amine (7i)

Purified by flash column chromatography (petroleum ether/AcOEt = 50:1), white solid (99.1 mg, 95% yield), m.p. 93-94 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.58 (m, 3H), 7.39 (ddd, *J* = 8.2, 6.8, 1.4 Hz,

1H), 7.28 – 7.18 (m, 1H), 6.91 – 6.83 (m, 2H), 5.97 (tt, J = 56.1, 4.2 Hz, 1H), 3.93 (s, 1H), 3.61 (td, J = 14.4, 4.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 135.0, 129.5, 128.15, 127.8, 126.78, 126.2, 122.8, 117.8, 117.49 – 110.91 (m), 105.1, 46.5 (t, J = 26.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.42 (dt, J = 56.0, 14.4 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.42(s); HRMS (ESI): calcd. for C₁₂H₁₂F₂N⁺ [M+H]⁺ 208.0932, found 208.0933.

N-(2,2-difluoroethyl)-9H-fluoren-2-amine (7j)

Purified by flash column chromatography (petroleum ether/AcOEt = 50:1), white solid (104.6 mg, 85% yield), m.p. 117-118 °C; ¹H NMR (400 MHz, CDCl₃) δ , 7.65 (d, *J* = 7.6 Hz, 1H), 7.61 (d, *J* =

8.2 Hz, 1H), 7.48 (d, J = 7.4 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.21 (td, J = 7.5, 1.2 Hz, 1H), 6.89 – 6.82 (m, 1H), 6.69 (dd, J = 8.2, 2.2 Hz, 1H), 5.97 (tt, J = 56.1, 4.3 Hz, 1H), 3.96 (s, 1H), 3.83 (s, 2H), 3.60 (td, J = 14.4, 4.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 145.4, 142.4, 142.1, 133.3, 126.8, 125.4, 124.9, 120.9, 118.8, 114.7 (t, J = 240.8 Hz), 112.4, 109.7, 46.9 (t, J = 26.0 Hz), 37.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -122.57 (dt, J = 56.3, 14.3 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.57 (s); HRMS (ESI): calcd. for C₁₅H₁₄F₂N⁺ [M+H]⁺ 246.1089, found 246.1082.

N-(2,2-difluoroethyl)-3,5-dimethoxyaniline (7k)

Purified by flash column chromatography (petroleum ether / EtOAc = 20:1), colorless liquid (99.8 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 5.95 (tt, *J* = 56.2, 2.1 Hz, 1H), 5.91 (t, *J* = 4.2 Hz, 1H), 5.84 (d, *J* = 2.1 Hz, 2H), 3.76 (s, 6H), 3.49 (td, *J* = 14.4, 4.2 Hz, 2H); ¹³C

NMR (100 MHz, CDCl₃) δ 161.9, 148.8, 120.2 – 109.6 (m), 92.1, 90.8, 55.24, 55.19, 46.45 (t, J = 26.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.60 (dt, J = 56.0, 14.4 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.60 (s); HRMS (ESI): calcd. for C₁₀H₁₄F₂NO₂⁺ [M+H]⁺ 218.0987, found 218.0985.

N-(2,2-difluoroethyl)-3,5-bis(trifluoromethyl)aniline (7l)

Purified by flash column chromatography (petroleum ether / EtOAc = 30:1), pale yellow liquid (120.8 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.02 (s, 2H), 5.95 (tt, *J* = 55.5, 3.8 Hz, 1H), 4.32 (s, 1H), 3.62 (td, *J* = 14.6, 3.8 Hz, 2H); ¹³C NMR (100 MHz,

CDCl₃) δ 147.8, 132.9 (q, J = 32.9 Hz), 123.5 (q, J = 272.8 Hz), 114.1 (q, J = 242.5 Hz), 112.4 (d, J = 4.2 Hz), 112.0 – 111.8 (m), 46.0 (t, J = 25.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.26 (s) , -122.73 (dt, J = 55.6, 14.4 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -63.26 (s) , -122.73(s); HRMS (ESI): calcd. for C₁₀H₈F₈N⁺ [M+H]⁺ 294.0524, found 294.0527.

N-(2,2,2-trifluoroethyl)pyridin-3-amine (9a)

Purified by flash column chromatography (petroleum ether / EtOAc = 1:1), white solid (35.7 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 2.9 Hz, 1H), 8.06 (d, J = 4.7 Hz, 1H), 7.14 (dd, J = 8.3, 4.6 Hz, 1H), 6.99 (ddd, J = 8.4, 3.0, 1.3 Hz, 1H), 4.21 (s, 1H), 3.78 (qd, J = 8.8, 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 140.5, 136.4, 124.9 (q, J = 280.0 Hz), 123.9, 119.1, 45.7 (q, J = 34.0 Hz). (Consistent with previous reported values⁸.)

N-(2,2,2-trifluoroethyl)pyridin-2-amine (9b)

Purified by flash column chromatography (petroleum ether / EtOAc = 20:1), white solid (27.4 mg, 62% yield); ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (dd, *J* = 5.1, 1.8 Hz, 1H), 7.45 (ddd, *J* = 8.7, 7.2, 1.9 Hz, 1H), 6.68 (ddd, *J* = 7.3, 5.0,

1.0 Hz, 1H), 6.49 (d, J = 8.3 Hz, 1H), 4.62 (s, 1H), 4.11 (qd, J = 9.2, 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 148.0, 137.8, 125.1 (q, J = 279.3 Hz), 114.7, 108.3, 43.0 (q, J = 33.8 Hz). (Consistent with previous reported values⁸.)

5-methyl-*N*-(2,2,2-trifluoroethyl)pyridin-3-amine (9c)

Purified by flash column chromatography (petroleum ether / EtOAc = 1:1), white solid (39.6 mg, 83% yield), m.p. 46-47 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 23.4 Hz, 2H), 6.82 (s, 1H), 4.22 (s, 1H), 3.89 – 3.63 (m, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 133.4, 125.0 (q, J = 280.0 Hz), 120.1, 45.7 (q, J = 33.9 Hz), 18.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.28 (t, J = 8.8 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.28 (s); HRMS (ESI): calcd. for C₈H₁₀F₃N₂⁺ [M+H]⁺ 191.0791, found 191.0787.

5-methyl-*N*-(2,2,2-trifluoroethyl)pyridin-2-amine (9d)

Purified by flash column chromatography (petroleum ether / EtOAc = 5:1), white solid (33.6 mg, 70% yield), m.p. 60-61 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.30 (dd, *J* = 8.4, 2.3 Hz, 1H), 6.45 (d, *J* = 8.4 Hz,

1H), 4.66 (s, 1H), 4.06 (qd, J = 9.1, 6.8 Hz, 2H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 147.1, 139.2, 125.1 (q, J = 279.5 Hz), 123.6, 108.0 , 43.3 (q, J = 34.0 Hz), 17.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.67 (t, J = 9.1 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.67 (s); HRMS (ESI): calcd. for C₈H₁₀F₃N₂⁺ [M+H]⁺ 191.0791, found 191.0785.

N-(2,2,2-trifluoroethyl)quinolin-3-amine (9e)

Purified by flash column chromatography (petroleum ether / EtOAc = 3:1), white solid (42.6 mg, 75% yield), m.p. 78-79 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 2.9 Hz, 1H), 8.02 – 7.94 (m, 1H), 7.71 –

7.59 (m, 1H), 7.54 – 7.40 (m, 2H), 7.18 (d, J = 2.8 Hz, 1H), 4.54 (s, 1H), 3.88 (qd, J = 8.8, 6.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 142.7, 139.8, 129.04, 128.98, 127.4, 126.3, 126.1, 125.0 (q, J = 281.1 Hz), 111.7, 45.7 (q, J = 34.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -71.87 (t, J = 8.8 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -71.87(s); HRMS (ESI): calcd. for C₁₁H₁₀F₃N₂⁺ [M+H]⁺ 227.0791, found 227.0784.

N-(2,2,2-trifluoroethyl)-*1H*-indol-5-amine (9f)

Purified by flash column chromatography (petroleum ether / AcOEt = 5:1), white solid (45.0 mg, 84% yield), m.p. 126-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.29 – 7.21 (m, 1H), 7.15 (t, *J* = 2.8 Hz,

1H), 6.95 (d, J = 2.3 Hz, 1H), 6.68 (dd, J = 8.6, 2.3 Hz, 1H), 6.52 - 6.36 (m, 1H), 3.79 (q, J = 9.1

Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 130.9, 128.8, 125.5 (q, J = 279.8 Hz), 125.0, 112.2, 111.9, 103.5, 102.0, 47.9 (q, J = 33.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -72.10 (t, J = 8.9 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -72.10 (s); HRMS (ESI): calcd. for C₁₀H₁₀F₃N₂⁺ [M+H]⁺ 215.0791, found 215.0783.

N-(2,2-difluoroethyl)pyridin-3-amine (10a)

Purified by flash column chromatography (petroleum ether / EtOAc = 2:3), brown liquid (33.2 mg, 84% yield); ¹Η NMR (400 MHz, CDCl₃) δ 8.20 -7.89 (m, 2H), 7.12 (dd, J = 8.3, 4.6 Hz, 1H), 6.95 (ddd, J = 8.3, 3.0, 1.3 Hz,

Purified by flash column chromatography (petroleum ether / EtOAc = 20:1),

1H), 5.92 (tt, J = 55.8, 4.0 Hz, 1H), 4.09 (s, 1H), 3.55 (tdd, J = 14.5, 6.7, 4.0 Hz, 2H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 143.1, 140.1, 136.3, 123.9, 119.1, 114.4 \text{ (t, } J = 242.2 \text{ Hz}\text{)}, 46.1 \text{ (t, } J = 26.0 \text{ Hz}\text{)}$ Hz). (Consistent with previous reported values⁸.)

N-(2,2-difluoroethyl)pyridin-2-amine (10b)

colorless and transparent liquid (22.5 mg, 57% yield); ¹H NMR (400 MHz, $CDCl_3$ δ 8.09 (d, J = 4.4 Hz, 1H), 7.42 (ddd, J = 8.7, 7.1, 1.9 Hz, 1H), 6.64 (ddd, J = 7.2, 5.1, 1.0 Hz, 1H), 6.46 (dd, J = 8.3, 1.0 Hz, 1H), 5.97 (tt, J = 56.6, 4.3 Hz, 1H), 4.66(s, 1H), 3.78 (tdd, J = 14.6, 6.5, 4.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 148.0, 137.6, 114.6 (t, J = 241.7 Hz), 114.1, 108.4, 44.1 (t, J = 26.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -123.14 (dt, J = 56.5, 14.7 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -123.14 (s); HRMS (ESI): calcd. for $C_7H_9F_2N_2^+$ [M+H]⁺ 159.0728, found 159.0726.

N-(2,2-difluoroethyl)-5-methylpyridin-3-amine (10c)

Purified by flash column chromatography (petroleum ether / EtOAc = 1:1), white solid (40.2 mg, 93% yield), m.p. 43-44 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.80 (m, 2H), 6.76 (t, J = 2.1 Hz, 1H), 5.91 (tt, J =

55.8, 4.1 Hz, 1H), 4.08 (s, 1H), 3.53 (tdd, J = 14.5, 6.5, 4.1 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 140.7, 133.7, 133.5, 119.9, 114.5 (t, J = 242.1 Hz), 46.1 (t, J = 26.0 Hz),

18.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -122.65 (dt, J = 55.6, 14.2 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.65 (s); **HRMS (ESI)**: calcd. for C₈H₁₁F₂N₂⁺ [M+H]⁺173.0885, found 173.0884.

N-(2,2-difluoroethyl)-5-methylpyridin-2-amine (10d)

Purified by flash column chromatography (petroleum ether / EtOAc = 5:1), pale yellow liquid (34.8 mg, 81% yield); ¹H NMR (400 MHz, $CDCl_3$) δ 7.90 (s, 1H), 7.25 (dd, J = 8.3, 2.4 Hz, 1H), 6.39 (d, J = 8.4 Hz, 1H), 5.95 (tt, J = 56.6, 4.3 Hz, 1H), 4.60 (s, 1H), 3.73 (tdd, J = 14.6, 6.5, 4.3 Hz, 2H), 2.17 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 155.7 147.3, 138.7, 122.9, 114.7 (t, *J* = 241.2 Hz), 108.1, 44.3 (t, *J* = 26.5 Hz), 17.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.11 (dt, J = 56.6, 14.7 Hz); ¹⁹F {¹H} NMR $(376 \text{ MHz, CDCl}_3) \delta$ -123.11 (s); **HRMS (ESI)**: calcd. for C₈H₁₁F₂N₂⁺ [M+H]⁺ 173.0885, found 173.0882.

N-(2,2-difluoroethyl)quinolin-3-amine (10e)

= 3:1), white solid (40.5 mg, 77% yield), m.p. 73-74 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 2.9 Hz, 1H), 7.96 (dd, J = 6.2, 3.4 Hz, 1H),

Purified by flash column chromatography (petroleum ether / EtOAc

7.62 (dd, J = 6.2, 3.4 Hz, 1H), 7.45 (dt, J = 6.3, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.4 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.4 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 5.98 (tt, J = 6.2, 3.5 Hz, 2H), 7.10 (d, J = 2.8 Hz, 1H), 7.10 (d, J = 2.8 Hz, 55.8, 4.1 Hz, 1H), 4.42 (s, 1H), 3.62 (tdd, J = 14.5, 6.6, 4.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 142.7, 140.4, 129.1, 129.1, 126.2, 125.8, 114.4 (t, *J* = 242.3 Hz), 111.0, 46.1 (t, *J* = 26.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.23 (dt, J = 55.8, 14.5 Hz); ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -122.23(s); **HRMS (ESI)**: calcd. for C₁₁H₁₁F₂N₂+ [M+H]+ 209.0885, found 209.0879.

N-(2,2-difluoroethyl)-1H-indol-5-amine (10f)

Purified by flash column chromatography (petroleum ether / EtOAc = 5:1), brown solid (39.4 mg, 80% yield), m.p. 111-112 °C; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta$ 7.99 (s, 1H), 7.23 (d, J = 8.6 Hz, 1H), 7.15 (t, J =

2.8 Hz, 1H), 6.92 (d, J = 2.3 Hz, 1H), 6.67 (dd, J = 8.6, 2.3 Hz, 1H), 6.43 (t, J = 2.8 Hz, 1H), 5.98 (tt, J = 56.4, 4.3 Hz, 1H), 3.57 (td, J = 14.4, 4.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 130.8, 128.8, 125.0, 115.0 (t, J = 241.3 Hz), 112.4, 112.0, 103.1, 102.0, 48.1 (t, J = 25.8 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -122.70 (dt, J = 56.3, 14.4 Hz); ¹⁹**F** {¹**H**} **NMR** (376 MHz, CDCl₃) δ - 122.70(s); **HRMS (ESI)**: calcd. for C₁₀H₁₁F₂N₂⁺ [M+H]⁺ 197.0885, found 197.0881.

5. X-ray structures of 7f and 9e

compound 7f (CCDC 1914999)

compound 9e (CCDC 1915000)

6. Reference

- 1. B. Zou, Q. Yuan and D. Ma, Angew. Chem. Int. Ed., 2007, 46, 2598-2601.
- 2. S. Ueda and S. L. Buchwald, Angew. Chem. Int. Ed., 2012, 51, 10364-10367.
- 3. F. Y. Kwong and S. L. Buchwald, Org. Lett., 2003, 5, 793-796.
- 4. Y. Zhai, X. Chen, W. Zhou, M. Fan, Y. Lai and D. Ma, J. Org. Chem., 2017, 82, 4964-4969.
- Guo, X.; Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y., Advanced Synthesis & Catalysis, 2006, 348 (15), 2197-2202.
- 6. W. Zhou, M. Fan, J. Yin, Y. Jiang and D. Ma, J. Am. Chem. Soc., 2015, 137, 11942-11945.
- 7. H. Luo, G. Wu, Y. Zhang and J. Wang, Angew. Chem. Int. Ed., 2015, 54, 14503-14507.
- 8. A. T. Brusoe and J. F. Hartwig, J. Am. Chem. Soc., 2015, 137, 8460-8468.
- 9. H. Wang, Y.-H. Tu, D.-Y. Liu and X.-G. Hu, Org. Biomol. Chem., 2018, 16, 6634-6637.

7. NMR spectra of novel compounds

 ^{13}C NMR (CDCl_3, 400 MHz) of 3b

¹H NMR (CDCl₃, 400 MHz) of 3c

¹³C NMR (CDCl₃, 400 MHz) of **3**c

¹H NMR (CDCl₃, 400 MHz) of 3d

 ^{13}C NMR (CDCl_3, 400 MHz) of 3d

¹H NMR (CDCl₃, 400 MHz) of **3e**

¹³C NMR (CDCl₃, 400 MHz) of 3e

¹³C NMR (CDCl₃, 400 MHz) of **3f**

 ^{19}F NMR (CDCl_3, 376 MHz) of 3f

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 3f

¹³C NMR (CDCl₃, 400 MHz) of 3g

 ^{13}C NMR (CDCl_3, 400 MHz) of 3h

¹³C NMR (CDCl₃, 400 MHz) of **3**i

¹⁹F NMR (CDCl₃, 376 MHz) of **3**i

 ^{19}F {1H} NMR (CDCl_3, 376 MHz) of 3i

¹³C NMR (CDCl₃, 400 MHz) of **3**j

 ^{19}F {1H} NMR (CDCl_3, 376 MHz) of 3j

¹H NMR (CDCl₃, 400 MHz) of 3k

¹³C NMR (CDCl₃, 400 MHz) of 3k

^{19}F NMR (CDCl₃, 376 MHz) of 3k

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 3k

¹H NMR (CDCl₃, 400 MHz) of **3**l

¹³C NMR (CDCl₃, 400 MHz) of **3**l

¹⁹F NMR (CDCl₃, 376 MHz) of **3**l

 ^{19}F {¹H} NMR (CDCl₃, 376 MHz) of **3**l

¹³C NMR (CDCl₃, 400 MHz) of 7a

¹³C NMR (CDCl₃, 400 MHz) of 7b

¹³C NMR (CDCl₃, 400 MHz) of 7c

¹³C NMR (CDCl₃, 400 MHz) of 7d

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 7d

¹³C NMR (CDCl₃, 400 MHz) of 7e

¹³C NMR (CDCl₃, 400 MHz) of 7f

$^{19}\mathrm{F}$ NMR (CDCl_3, 376 MHz) of 7f

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 7f

¹³C NMR (CDCl₃, 400 MHz) of 7g

 ^{19}F NMR (CDCl_3, 376 MHz) of 7g

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 7g

¹³C NMR (CDCl₃, 400 MHz) of 7h

¹³C NMR (CDCl₃, 400 MHz) of 7i

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 7i

¹³C NMR (CDCl₃, 400 MHz) of 7j

 ^{19}F {^1H} NMR (CDCl_3, 376 MHz) of 7j

¹³C NMR (CDCl₃, 400 MHz) of 7k

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 7k

¹³C NMR (CDCl₃, 400 MHz) of 7l

¹⁹F NMR (CDCl₃, 376 MHz) of 71

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 71

¹³C NMR (CDCl₃, 400 MHz) of 9a

¹³C NMR (CDCl₃, 400 MHz) of 9b

¹H NMR (CDCl₃, 400 MHz) of 9c

¹³C NMR (CDCl₃, 400 MHz) of 9c

 ^{19}F NMR (CDCl₃, 376 MHz) of 9c

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 9c

 ^{13}C NMR (CDCl_3, 400 MHz) of 9d

 ^{19}F NMR (CDCl₃, 376 MHz) of 9d

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 9d

¹³C NMR (CDCl₃, 400 MHz) of 9e

¹⁹F NMR (CDCl₃, 376 MHz) of 9e

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 9e

¹³C NMR (CDCl₃, 400 MHz) of 9f

 ^{19}F NMR (CDCl_3, 376 MHz) of 9f

 ^{19}F {¹H} NMR (CDCl₃, 376 MHz) of 9f

¹³C NMR (CDCl₃, 400 MHz) of **10a**

¹³C NMR (CDCl₃, 400 MHz) of **10b**

 ^{19}F NMR (CDCl_3, 376 MHz) of 10b

^{19}F {¹H} NMR (CDCl_3, 376 MHz) of 10b

 ^{13}C NMR (CDCl_3, 400 MHz) of 10c

¹⁹F NMR (CDCl₃, 376 MHz) of 10c

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 10c

¹³C NMR (CDCl₃, 400 MHz) of 10d

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 10d

¹H NMR (CDCl₃, 400 MHz) of 10e

¹³C NMR (CDCl₃, 400 MHz) of **10e**

¹⁹F {¹H} NMR (CDCl₃, 376 MHz) of 10e

 ^{13}C NMR (CDCl_3, 400 MHz) of 10f

^{19}F NMR (CDCl_3, 376 MHz) of 10f

^{19}F {1H} NMR (CDCl_3, 376 MHz) of 10f

