Photo-Induced Thiol-Ene Reactions for Late-Stage Functionalization of Unsaturated Polyether Macrocycles: Regio and Diastereoselective Access to Macrocyclic Dithiol Derivatives

Supporting Information

Elodie Brun,^a Ke-Feng Zhang,^a Laure Guénée,^b Jérôme Lacour*^a

^a Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.

^b Laboratory of Crystallography, University of Geneva, Quai Ernest Ansermet 24, 1211 Geneva 4, Switzerland.

1. General Information and Materials	S5
2. Synthesis of unsaturated ester macrocycle 1 and 2	
3. Photo-initiated thiol-ene click reaction	S6
3.1 General procedure for the photo-initiated thiol-ene click reaction	S6
3.2 Optimization studies	S6
3.2.1 Characterization of 3a	S6
3.2.2 Characterization of 3b	S9
3.2.3 Characterization of 3c	S11
3.2.4 Characterization of 3d	S13
3.2.5 Characterization of 3e	S14
3.2.6 Characterization of 3f	S15
3.2.7 Characterization of 3g	S17
3.2.8 Characterization of 3h	S19
4. Et ₃ B-mediated thiol-ene reactions	S22
4.1 General Procedure	S22
5. Substrate scope	S24
5.1 Characterization of 5	S24
5.2 Characterization of 6	S25
5.3 Characterization of 7	S27
5.4 Characterization of 8	S28
5.5 Characterization of 9	S29
5.6 Characterization of 10	S30
5.7 Characterization of 11	S32
5.8 Characterization of 12	S33
5.9 Characterization of 13	S35
6. Deprotection of the acetyl groups	S37
7. NMR spectra	S40
7.1 Spectra of 3a	S40
7.1.1 3a (<i>C</i> ₂ - <i>trans</i>)	S40
7.1.2 3a (<i>C</i> ₁)	S42
7.1.3 3a (<i>C</i> ₂ - <i>cis</i>)	S44
7.2 Spectra of 3b	S47
7.2.1 3b (<i>C</i> ₂ - <i>cis</i>)	S47
7.2.2 3b (C_1)	S49
7.3 Spectra of 3c	S51
7.3.1 3c (<i>C</i> ₂ - <i>cis</i>)	S51

7.3.2 3c (C_1)	\$53
7.4 Spectra of 3d (<i>C</i> ₂ - <i>cis</i>)	\$55
7.5 Spectra of 3e (<i>C</i> ₂ - <i>cis</i>)	
7.6 Spectra of 3f	\$59
7.6.1 3f (<i>C</i> ₂ - <i>cis</i>)	\$59
7.6.2 3f (C_1)	
7.7 Spectra of 3g	\$63
7.7.1 3g (<i>C</i> ₂ - <i>cis</i>)	\$63
7.7.2 3 $\mathbf{g}(C_1)$	
7.8 Spectra of 3h	
7.8.1 3h (<i>C</i> ₂ - <i>cis</i>)	
7.8.2 3h (<i>C</i> ₂ - <i>trans</i>)	S69
7.8.3 3h (<i>C</i> ₁)	
7.9 Spectra of 5 (<i>C</i> ₂ - <i>cis</i>)	
7.10 Spectra of 6	
7.10.1 6 (<i>C</i> ₂ - <i>cis</i>)	
7.10.2 6 (<i>C</i> ₁)	
7.11 Spectra of 7	\$79
7.12 Spectra of 8	
7.13 Spectra of 9	
7.14 Spectra of 10	
7.14.1 10 (<i>C</i> ₂ - <i>cis</i>)	
7.14.2 10 (<i>C</i> ₂ - <i>trans</i>)	
7.14.3 10 (<i>C</i> ₁)	\$89
7.15 Spectra of 11	S91
7.16 Spectra of 12	
7.16.1 12 (<i>C</i> ₂ - <i>cis</i>)	
7.16.2 12 (<i>C</i> ₁)	
7.17 Spectra of 13	S97
7.17.1 13 (<i>C</i> ₂ - <i>cis</i>)	\$97
7.17.2 13 (C_1)	S99
7.18 Deprotection of the acetyl groups (compound 4)	S101
4 (<i>C</i> ₂ - <i>trans</i>)	S101
4 (<i>C</i> ₁)	S103
4 (<i>C</i> ₂ - <i>cis</i>)	
. X-ray	
8.1 C ₂ -trans 3b	

8.2 <i>C</i> ₂ - <i>cis</i> _ 3b	
8.3 <i>C</i> ₂ - <i>trans</i> _ 4	S111
8.4 <i>C</i> ₂ - <i>cis</i> _ 4	\$113

1. General Information and Materials

All reactions involving air sensitive compounds were carried out under N_2 or argon by means of an inert gas/vacuum double manifold line and standard Schlenk techniques using dry solvents. Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. *t*-BuOK was sublimed prior to use.

Analytical thin-layer chromatography (TLC) were performed with Silicagel 60 F_{254} aluminum sheets from Merck. Preparative TLC were performed with SiliaPlate TLCGlass Backed TLC Extra Hard Layer, 60Å (Size: 20X20 cm, thickness: 1000 µm, Indicator: F-254). Flash column chromatography were performed with Silica SiliaFlash P60, 40-63 µm (230-400 mesh). NMR spectra were recorded on a Bruker AVANCE I 300 MHz spectrometer, equipped with a 5 mm QNP D133 probe, a Bruker AVANCE III HD-NanoBay 300 MHz spectrometer, equipped with a 5 mm BB(F)-H-D probe, on a Bruker ADVANCE III HDNanoBay 400 MHz spectrometer, equipped with a 5 mm CryoProbe Prodigy, or on a Bruker II 500 MHz spectrometer, equipped with a 5 mm Cryogenic DCH $({}^{1}H/{}^{13}C)$ probe. ¹H NMR chemical shifts are given in ppm relative to Me₄Si using solvent resonances as internal standards (CDCl₃ δ = 7.26 ppm). Data was reported as follows: chemical shift (δ) in ppm, multiplicity (s = singulet, d = doublet, t = triplet, dd = doublet of doublet, q = quartet and m = multiplet), coupling constant (Hz) and integration. ¹³C NMR chemicals shifts are given in ppm relative to Me₄Si with solvent resonances used as internal standards (CDCl₃ δ = 77.16 ppm). ¹⁹F-NMR chemicals shifts are given in ppm. IR spectra were recorded with a Perkin-Elmer 100 FT-IR spectrometer using a diamond ATR Golden Gate sampling and are reported in wave numbers (cm⁻¹). Melting points (m.p.) were measured in open capillary tubes with a Büchi B-550 melting point apparatus and were uncorrected. Electrospray mass spectra were obtained on an API 150EX (AB/MDS Sciex) for the low resolution mass spectra (LR-ESI-MS) and on a QSTAR Pulsar (AB/MDS Sciex) spectrometer by the Department of Mass Spectroscopy at the University of Geneva for the high resolution mass spectra (HR-MS).

2. Synthesis of unsaturated ester macrocycle 1 and 2

Unsaturated ester macrocycle **1** and **2** were synthetized according to previously reported procedures from the literature (*ACS Catal.* **2016**, 6, 4877; *Chem. Sci.* **2015**, 6, 4923).

3. Photo-initiated thiol-ene click reaction

3.1 General procedure for the photo-initiated thiol-ene click reaction

To a suspension of macrocycle (0.1 mmol, 1.0 equiv.) in anhydrous toluene (1.0 mL) was added 2,2-dimethoxyphenylacetophenone (DMPA, 0.2 equiv.), followed by the addition of thiol reagent (10 equiv.). The mixture was irradiated (mercury lamp) for the stated time. Upon completion, the reaction mixture was then purified by column chromatography on silica gel to afford a mixture of diastereomers. Further purification of this mixture by silica gel preparative TLC afforded the corresponding macrocyclic dithiol derivatives.

3.2 Optimization studies

3.2.1 Characterization of 3a

Chemical Formula: $C_{36}H_{38}F_{12}N_2O_{10}S_2$ Exact Mass: 950.1776

According to general procedure, 3a (C_2 -trans) was obtained as a white solid (25% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.51$ (SiO₂, pentane/ethyl acetate 1:1).

m.p.: 212-213 °C

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.12 (s, 2H), 8.26 (s, 4H), 7.62 (s, 2H), 4.05 (d, *J* = 2.0 Hz, 2H), 3.88 (ddd, *J* = 11.1, 6.6, 1.6 Hz, 2H), 3.82 (ddd, *J* = 9.8, 4.5, 2.0 Hz, 2H), 3.78 – 3.71 (m, 4H), 3.68 – 3.57 (m, 6H), 3.55 – 3.48 (m, 2H), 3.45 – 3.38 (m, 4H), 3.32 (dd, *J* = 14.0, 9.7 Hz, 2H), 2.39 (s, 6H).

¹³**C** NMR (126 MHz, CDCl₃) δ 195.7 (2 C), 170.5 (2 C), 139.3 (2 C), 132.1 (q, *J* = 33.2 Hz, 4 C), 123.5 (q, *J* = 273.4 Hz, 4 C), 120.1 (d, *J* = 4.1 Hz, 4 CH), 117.5 (2 CH), 81.0 (2 CH), 80.1 (2 CH), 71.4 (2 CH₂), 70.0 (2 CH₂), 69.6 (2 CH₂), 68.7 (2 CH₂), 30.9 (2 CH₃), 28.6 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.75.

IR (neat): \tilde{v} /cm⁻¹ 3395, 3319, 2919, 1691, 1621, 1541, 1474, 1442, 1383, 1278, 1179, 1123, 964, 934, 884, 846, 734, 701, 682, 628, 560, 526, 509.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{36}H_{42}F_{12}N_3O_{10}S_2$ 968.2115, observed 968.2125 (1.1 ppm).

Exact Mass: 950.1776

According to general procedure, $3a(C_1)$ was obtained as a white solid (27% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.23$ (SiO₂, pentane/ethyl acetate 1:1).

m.p.: 132-133 °C

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.78 (s, 1H), 9.38 (s, 1H), 8.09 (s, 2H), 7.99 (s, 2H), 7.45 (d, *J* = 12.3 Hz, 2H), 4.04 – 3.81 (m, 12H), 3.72 – 3.44 (m, 8H), 3.32 – 3.04 (m, 4H), 2.37 (s, 3H), 2.34 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 195.7 (C), 194.8 (C), 170.1 (C), 169.1 (C), 139.24 (C), 139.21 (C), 131.9 (q, *J* = 33.2 Hz, 4 C), 123.2 (q, *J* = 272.7 Hz, 4 C), 119.5 (2 CH), 119.2 (2 CH), 117.6 (CH), 117.4 (CH), 81.7 (CH), 80.9 (CH), 80.3 (CH), 80.1 (CH), 71.6 (2 CH₂), 70.7 (CH₂), 70.5 (CH₂), 70.1 (CH₂), 69.0(CH₂), 68.2 (2 CH₂), 30.8 (CH₃), 30.7 (CH₃), 28.4 (CH₂), 28.2 (CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.90, -62.97.

IR (neat): \tilde{v} /cm⁻¹ 3318, 2924, 1692, 1622, 1544, 1472, 1441, 1381, 1276, 1174, 1123, 1003, 961, 913, 886, 844, 732, 704, 682, 626, 578, 537.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{36}H_{42}F_{12}N_3O_{10}S_2$ 968.2115, observed 968.2127 (1.3 ppm).

According to general procedure, 3a (C_2 -cis) was obtained as a white solid (38% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.16$ (SiO₂, pentane/ethyl acetate 1:1).

m.p.: 188-189 °C

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.29 (s, 2H), 7.99 (d, J = 1.6 Hz, 4H), 7.30 (s, 2H), 4.02 – 3.92 (m, 8H), 3.84 (td, J = 10.0, 1.6 Hz, 2H), 3.78 – 3.66 (m, 6H), 3.60 (td, J = 10.1, 1.7 Hz, 2H), 3.50 (dt, J = 10.4, 2.1 Hz, 2H), 3.44 (dd, J = 14.0, 4.7 Hz, 2H), 3.33 (dd, J = 14.0, 9.9 Hz, 2H), 2.39 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 196.3 (2 C), 168.7 (2 C), 139.0 (2 C), 131.5 (q, *J* = 33.6 Hz, 4 C), 123.1 (q, *J* = 273.5 Hz, 4 C), 118.7 (4 CH), 117.1 (2 CH), 80.6 (2 CH), 80.0 (2 CH), 71.0 (2 CH₂), 70.2 (2 CH₂), 69.7 (2 CH₂), 68.6 (2 CH₂), 30.9 (2 CH₃), 28.0 (2 CH₂).

¹⁹**F** NMR (282 MHz, CDCl₃) δ -62.85.

IR (neat): \tilde{v} /cm⁻¹ 3669, 3331, 2921, 1691, 1618, 1538, 1473, 1439, 1379, 1358, 1277, 1174, 1120, 957, 910, 888, 842, 791, 732, 703, 682, 625, 573, 518, 508, 503.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{36}H_{42}F_{12}N_3O_{10}S_2$ 968.2115, observed 968.2124 (1.0 ppm).

3.2.2 Characterization of 3b

According to general procedure, **3b** (C_2 -cis) was obtained as a white solid (48% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.57$ (SiO₂, pentane/ethyl acetate 1:1).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.37 (s, 2H), 8.00 (d, *J* = 1.6 Hz, 4H), 7.32 (s, 2H), 4.19 (d, *J* = 2.2 Hz, 2H), 3.99 – 3.95 (m, 2H), 3.94 – 3.85 (m, 4H), 3.83 – 3.76 (m, 4H), 3.75 – 3.70 (m, 4H), 3.69 – 3.63 (m, 2H), 3.56 – 3.47 (m, 2H), 3.16 (dd, *J* = 13.5, 9.5 Hz, 2H), 2.89 (dd, *J* = 13.6, 5.0 Hz, 2H), 2.74 – 2.59 (m, 4H), 1.32 (t, *J* = 7.4 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 168.7 (2 C), 139.2 (2 C), 131.6 (q, *J* = 33.6 Hz, 4 C), 123.2 (q, *J* = 273.2 Hz, 4 C), 118.7 (4 CH), 117.0 (2 CH), 81.5 (2 CH), 80.4 (2 CH), 70.9 (2 CH₂), 70.2 (2 CH₂), 69.8 (2 CH₂), 68.8 (2 CH₂), 30.9 (2 CH₂), 27.3 (2 CH₂), 15.2 (2 CH₃).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.84.

IR (neat): \tilde{v}/cm^{-1} 3330, 2915, 1692, 1620, 1536, 1473, 1438, 1379, 1276, 1172, 1121, 925, 887, 842, 733, 703, 682, 654.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{36}H_{46}F_{12}N_3O_8S_2$ 940.2529, observed 940.2511 (-1.9 ppm).

Chemical Formula: $C_{36}H_{42}F_{12}N_2O_8S_2$ Exact Mass: 922.2191

According to general procedure, $3b(C_1)$ was obtained as a colorless oil (26% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (SiO₂, pentane/ethyl acetate 1:1).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.92 (s, 1H), 9.39 (s, 1H), 8.12 (s, 2H), 8.04 (s, 2H), 7.50 (s, 2H), 4.31 (d, *J* = 1.9 Hz, 1H), 4.21 (d, *J* = 3.9 Hz, 1H), 4.08 (ddd, *J* = 10.0, 4.8, 2.0 Hz, 1H), 3.99 – 3.90 (m, 4H), 3.89 – 3.78 (m, 5H), 3.70 – 3.55 (m, 7H), 3.49 (m, 1H), 2.84 (m, 1H), 2.76 (m, 1H), 2.67 (m, 1H), 2.58 – 2.50 (m, 4H), 2.45 (m, 1H), 1.25 (t, *J* = 7.4 Hz, 3H), 1.22 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.8 (C), 169.6 (C), 139.5 (C), 139.4 (C), 132.1 (q, *J* = 33.1 Hz, 2 C), 132.0 (q, *J* = 33.3 Hz, 2 C), 123.3 (q, *J* = 273.3 Hz, 4 C), 120.0 (2 CH), 119.4 (2 CH), 117.6 (CH), 117.4 (CH), 82.0 (CH), 81.0 (CH), 80.4 (CH), 80.3 (CH), 71.6 (CH₂), 71.2 (CH₂), 70.8 (2 CH₂), 70.4 (CH₂), 70.0 (CH₂), 68.71 (CH₂), 68.66 (CH₂), 31.9 (CH₂), 30.9 (CH₂), 27.0 (CH₂), 26.6 (CH₂), 14.9 (CH₃), 14.8 (CH₃).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.87, -62.94.

IR (neat): \tilde{v} /cm⁻¹ 3317, 2926, 1693, 1542, 1472, 1440, 1381, 1277, 1174, 1126, 934, 886, 732, 704, 682, 513.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for C₃₆H₄₆F₁₂N₃O₈S₂ 940.2529, observed 940.2520 (-1.0 ppm).

3.2.3 Characterization of 3c

Reagent **14c** is a mixture of regio and stereoisomers. This mixed composition has little influence on the stereochemistry of the thiol-ene addition but it complicates greatly the reporting of the spectral characteristics of compounds **3c**. As such, we provide the ¹H and ¹³C NMR spectra in the dataset associated with this paper but do not give further details in the following paragraphs.

Chemical Formula: C₅₄H₇₄F₁₂N₂O₁₂S₂ Exact Mass: 1234.4492

According to general procedure, 3c (C_2 -cis) was obtained as a colorless oil (49% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.49$ (Pentane/EtOAc = 1:1).

¹H NMR (500 MHz, Chloroform-d): As mentioned above, please consult the NMR spectrum in the dataset associated with this paper.

¹³C NMR (126 MHz, CDCl₃): As mentioned above, please consult the NMR spectrum in the dataset associated with this paper.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.82.

IR (neat): \tilde{v}/cm^{-1} 3331, 2926, 1733, 1694, 1538, 1473, 1438, 1381, 1279, 1176, 1130, 929, 887, 704, 683, 603, 569.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{54}H_{78}F_{12}N_3O_{12}S_2$ 1252.4830, observed 1252.4837 (0.5 ppm).

 $\begin{array}{l} \mbox{Chemical Formula: } C_{54}H_{74}F_{12}N_2O_{12}S_2 \\ \mbox{Exact Mass: } 1234.4492 \end{array}$

According to general procedure, $3c(C_1)$ was obtained as a colorless oil (26% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.64$ (Pentane/EtOAc = 1:1).

¹H NMR (500 MHz, Chloroform-d): As mentioned above, please consult the NMR spectrum in the dataset associated with this paper.

¹³C NMR (126 MHz, CDCl₃): As mentioned above, please consult the NMR spectrum in the dataset associated with this paper.

¹⁹F NMR (282 MHz, CDCl₃) δ -62.85, -62.93.

IR (neat): \tilde{v} /cm⁻¹ 3318, 2935, 1732, 1692, 1620, 1543, 1472, 1440, 1382, 1277, 1174, 1128, 934, 886, 704, 682, 567.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{54}H_{78}F_{12}N_3O_{12}S_2$ 1252.4830, observed 1252.4833 (0.2 ppm).

3.2.4 Characterization of 3d

According to general procedure, $3d(C_2$ -cis) was obtained as a white solid (57% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.45$ (SiO₂, DCM/MeOH 95:5).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.28 (s, 2H), 7.98 (d, *J* = 1.7 Hz, 4H), 7.32 (s, 2H), 4.17 (d, *J* = 2.3 Hz, 2H), 4.02 – 3.96 (m, 2H), 3.95 – 3.85 (m, 4H), 3.82 – 3.75 (m, 4H), 3.75 – 3.68 (m, 4H), 3.65 (td, *J* = 10.1, 1.8 Hz, 2H), 3.55 – 3.49 (m, 2H), 3.19 (dd, *J* = 13.6, 9.4 Hz, 2H), 2.99 – 2.74 (m, 10H), 1.77 (t, *J* = 7.9 Hz, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 168.6 (2 C), 139.0 (2 C), 131.6 (q, *J* = 33.3 Hz, 4 C), 123.2 (q, *J* = 273.4 Hz, 4 C), 118.7 (4 CH), 117.1 (2 CH), 81.6 (2 CH), 80.1 (2 CH), 71.1 (2 CH₂), 70.1 (2 CH₂), 69.8 (2 CH₂), 68.9 (2 CH₂), 37.4 (2 CH₂), 31.2 (2 CH₂), 25.0 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.79.

IR (neat): \tilde{v} /cm⁻¹ 3328, 2912, 1692, 1619, 1538, 1474, 1438, 1380, 1278, 1173, 1125, 1003, 952, 910, 888, 843, 732, 703, 682.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for C₃₆H₄₆F₁₂N₃O₈S₄ 1004.1971, observed 1004.1967 (-0.4 ppm).

3.2.5 Characterization of 3e

According to general procedure, $3e(C_2-cis)$ was obtained (60% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.56$ (SiO₂, DCM/MeOH 98:2).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.30 (s, 2H), 7.99 (d, *J* = 1.6 Hz, 4H), 7.31 (s, 2H), 4.17 (d, *J* = 2.2 Hz, 2H), 4.03 – 3.96 (m, 2H), 3.96 – 3.84 (m, 4H), 3.83 – 3.62 (m, 10H), 3.52 (dt, *J* = 10.4, 2.2 Hz, 2H), 3.17 (dd, *J* = 13.6, 9.5 Hz, 2H), 2.88 (dd, *J* = 13.5, 5.1 Hz, 2H), 2.81 – 2.74 (m, 4H), 2.68 (dtd, *J* = 9.0, 6.9, 2.2 Hz, 4H), 2.00 – 1.90 (m, 4H), 1.38 (t, *J* = 8.0 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 168.6 (2 C), 139.1 (2 C), 131.5 (q, *J* = 33.5 Hz, 4 C), 123.2 (q, *J* = 273.5 Hz, 4 C), 118.7 (4 CH), 117.0 (2 CH), 81.5 (2 CH), 80.2 (2 CH), 71.1 (2 CH₂), 70.1 (2 CH₂), 69.8 (2 CH₂), 68.9 (2 CH₂), 33.5 (2 CH₂), 31.5 (2 CH₂), 31.2 (2 CH₂), 23.4 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ –62.80.

IR (neat): \tilde{v} /cm⁻¹ 3329, 2919, 1691, 1536, 1473, 1438, 1379, 1276, 1172, 1121, 1094, 951, 927, 887, 842, 736, 702, 681.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{38}H_{50}F_{12}N_3O_8S_4$ 1032.2284, observed 1032.2304 (2.0 ppm).

3.2.6 Characterization of 3f

Chemical Formula: C₄₀H₅₀F₁₂N₂O₈S₄ Exact Mass: 1042.2258

According to general procedure, $3f(C_2$ -cis) was obtained (27% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.65$ (SiO₂, DCM/MeOH 98:2).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.37 (s, 2H), 8.00 (d, *J* = 1.6 Hz, 4H), 7.32 (s, 2H), 4.17 (d, *J* = 2.2 Hz, 2H), 4.01 – 3.95 (m, 2H), 3.94 – 3.85 (m, 4H), 3.83 – 3.76 (m, 4H), 3.76 – 3.63 (m, 6H), 3.52 (dt, *J* = 10.5, 2.2 Hz, 2H), 3.15 (dd, *J* = 13.5, 9.4 Hz, 2H), 2.88 (dd, *J* = 13.6, 5.1 Hz, 2H), 2.73 – 2.61 (m, 4H), 2.61 – 2.52 (m, 4H), 1.82 – 1.71 (m, 8H), 1.37 (t, *J* = 7.8 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.6 (2 C), 139.1 (2 C), 131.6 (q, *J* = 33.4 Hz, 4 C), 123.2 (q, *J* = 273.5 Hz, 4 C), 118.7 (4 CH), 117.0 (2 CH), 81.5 (2 CH), 80.4 (2 CH), 71.0 (2 CH₂), 70.2 (2 CH₂), 69.8 (2 CH₂), 68.9 (2 CH₂), 33.0 (2 CH₂), 32.9 (2 CH₂), 31.3 (2 CH₂), 28.5 (2 CH₂), 24.3 (2 CH₂).

¹⁹**F** NMR (282 MHz, CDCl₃) δ -62.83.

IR (neat): \tilde{v} /cm⁻¹ 3328, 2927, 1692, 1538, 1438, 1381, 1279, 1175, 1128, 888, 704, 623.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{40}H_{54}F_{12}N_3O_8S_4$ 1060.2597, observed 1060.2575 (-2.1 ppm).

Chemical Formula: $C_{40}H_{50}F_{12}N_2O_8S_4$ Exact Mass: 1042.2258

According to general procedure, $3f(C_1)$ was obtained as a light yellow oil (15% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.49$ (SiO₂, DCM/MeOH 98:2).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.91 (s, 1H), 9.38 (s, 1H), 8.11 (d, *J* = 1.6 Hz, 2H), 8.04 (s, 2H), 7.50 (s, 2H), 4.30 (d, *J* = 1.9 Hz, 1H), 4.21 (d, *J* = 3.9 Hz, 1H), 4.07 (ddd, *J* = 9.8, 5.0, 2.0 Hz, 1H), 3.98 – 3.90 (m, 4H), 3.89 – 3.77 (m, 5H), 3.70 – 3.60 (m, 5H), 3.58 – 3.44 (m, 3H), 2.83 (m, 1H), 2.78 – 2.65 (m, 2H), 2.59 – 2.39 (m, 9H), 1.78 – 1.67 (m, 8H), 1.36 (t, *J* = 7.8 Hz, 1H), 1.34 (t, *J* = 7.8 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.7 (C), 169.6 (C), 139.4 (C), 139.3 (C), 132.1 (q, J = 33.4 Hz, 2 C), 132.0 (q, J = 33.6 Hz, 2 C), 123.3 (q, J = 273.4 Hz, 4 C), 120.0 (2 CH), 119.4 (2 CH), 117.7 (CH), 117.4 (CH), 82.0 (CH), 81.0 (CH), 80.4 (CH), 80.3 (CH), 71.6 (CH₂), 71.2 (CH₂), 71.0 (CH₂), 70.8 (CH₂), 70.5 (CH₂), 70.2 (CH₂), 70.0 (CH₂), 68.8 (CH₂), 33.0 (CH₂), 32.9 (CH₂), 32.5 (CH₂), 32.1 (CH₂), 31.3 (CH₂), 28.2 (CH₂), 28.1 (CH₂), 24.30 (CH₂), 24.28 (CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.85, -62.91.

IR (neat): \tilde{v} /cm⁻¹ 3315, 2926, 1693, 1543, 1472, 1440, 1382, 1278, 1174, 1127, 934, 887, 704, 682.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for C₄₀H₅₄F₁₂N₃O₈S₄ 1060.2597, observed 1060.2580 (-1.6 ppm).

3.2.7 Characterization of 3g

According to general procedure, $3g(C_2$ -cis) was obtained (34% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.74$ (SiO₂, DCM/MeOH 98:2).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.38 (s, 2H), 8.00 (d, J = 1.6 Hz, 4H), 7.32 (s, 2H), 4.17 (d, J = 2.2 Hz, 2H), 3.97 (dd, J = 8.2, 2.3 Hz, 2H), 3.94 – 3.84 (m, 4H), 3.84 – 3.76 (m, 4H), 3.74 – 3.62 (m, 6H), 3.52 (dt, J = 10.2, 2.3 Hz, 2H), 3.15 (dd, J = 13.5, 9.5 Hz, 2H), 2.87 (dd, J = 13.5, 5.1 Hz, 2H), 2.71 – 2.61 (m, 4H), 2.58 – 2.51 (m, 4H), 1.70 – 1.62 (m, 8H), 1.58 – 1.49 (m, 4H), 1.35 (t, J = 7.8 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 168.6 (2 C), 139.1 (2 C), 131.5 (q, *J* = 33.6 Hz, 4 C), 123.2 (q, *J* = 273.3 Hz, 4 C), 118.7 (4 CH), 117.0 (2 CH), 81.5 (2 CH), 80.4 (2 CH), 70.9 (2 CH₂), 70.2 (2 CH₂), 69.8 (2 CH₂), 68.8 (2 CH₂), 33.6 (2 CH₂), 33.3 (2 CH₂), 31.3 (2 CH₂), 29.4 (2 CH₂), 27.6 (2 CH₂), 24.6 (2 CH₂).

¹⁹**F** NMR (282 MHz, CDCl₃) δ -62.83.

IR (neat): \tilde{v}/cm^{-1} 3329, 2928, 1693, 1538, 1474, 1438, 1380, 1278, 1174, 1127, 1004, 952, 930, 887, 843, 704, 682.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{42}H_{58}F_{12}N_3O_8S_4$ 1088.2910, observed 1088.2905 (-0.4 ppm).

Chemical Formula: $C_{42}H_{54}F_{12}N_2O_8S_4$ Exact Mass: 1070.2571

According to general procedure, $3f(C_1)$ was obtained as a light yellow oil (21% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.53$ (SiO₂, DCM/MeOH 98:2).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.93 (s, 1H), 9.39 (s, 1H), 8.11 (d, *J* = 1.6 Hz, 2H), 8.04 (s, 2H), 7.50 (s, 2H), 4.30 (d, *J* = 1.9 Hz, 1H), 4.20 (d, *J* = 3.8 Hz, 1H), 4.07 (ddd, *J* = 9.8, 5.0, 1.9 Hz, 1H), 3.96 (m, 1H), 3.95 – 3.91 (m, 3H), 3.88 – 3.77 (m, 5H), 3.70 – 3.60 (m, 6H), 3.55 (dt, *J* = 10.3, 2.3 Hz, 1H), 3.49 (ddd, *J* = 11.4, 4.3, 1.9 Hz, 1H), 2.80 – 2.63 (m, 3H), 2.58 – 2.45 (m, 9H), 1.65 – 1.54 (m, 8H), 1.52 – 1.44 (m, 4H), 1.35 (t, *J* = 7.8 Hz, 1H), 1.33 (t, *J* = 7.8 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.7 (C), 169.5 (C), 139.4 (C), 139.3 (C), 132.03 (q, *J* = 33.2 Hz, 2 C), 132.00 (q, *J* = 33.3 Hz, 2 C), 123.2 (q, *J* = 273.4 Hz, 4 C), 120.0 (2 CH), 119.4 (2 CH), 117.6 (CH), 117.4 (CH), 82.0 (CH), 81.0 (CH), 80.4 (CH), 80.3 (CH), 71.6 (2 CH₂), 70.8 (2 CH₂), 70.4 (CH₂), 70.0 (CH₂), 68.8 (CH₂), 68.7 (CH₂), 33.64 (CH₂), 33.59 (CH₂), 33.0 (CH₂), 32.6 (CH₂), 32.3 (CH₂), 31.4 (CH₂), 29.15 (CH₂), 29.07 (CH₂), 27.6 (CH₂), 27.5 (CH₂), 24.6 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.85, -62.91.

IR (neat): \tilde{v}/cm^{-1} 3316, 2929, 1693, 1544, 1472, 1440, 1382, 1278, 1174, 1128, 934, 886, 704.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{42}H_{58}F_{12}N_3O_8S_4$ 1088.2910, observed 1088.2881 (-2.6 ppm).

3.2.8 Characterization of 3h

Exact Mass: 954.2089

According to general procedure, **3h** (C_2 -cis) was obtained as a colorless oil (29% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.08$ (SiO₂, DCM/MeOH 95:5).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.13 (s, 2H), 8.84 (s, 2H), 8.24 (s, 4H), 7.62 (s, 2H), 4.26 (d, *J* = 1.9 Hz, 2H), 3.96 (ddd, *J* = 9.1, 5.5, 1.8 Hz, 2H), 3.86 – 3.83 (m, 4H), 3.80 – 3.77 (m, 2H), 3.74 – 3.70 (m, 4H), 3.68 – 3.65 (m, 2H), 3.63 – 3.60 (m, 2H), 3.56 – 3.52 (m, 4H), 3.42 (dt, *J* = 10.6, 2.8 Hz, 2H), 3.15 (dd, *J* = 13.9, 9.0 Hz, 2H), 3.01 (dd, *J* = 13.9, 5.5 Hz, 2H), 2.84 – 2.81 (m, 4H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.7 (2 C), 139.3 (2 C), 132.0 (q, *J* = 33.4 Hz, 4 C), 123.4 (q, *J* = 273.3 Hz, 4 C), 120.2 (4 CH), 117.5 (2 CH), 80.5 (2 CH), 80.3 (2 CH), 71.2 (2 CH₂), 70.0 (2 CH₂), 69.9 (2 CH₂), 68.7 (2 CH₂), 61.4 (2 CH₂), 35.6 (2 CH₂), 31.8 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.77.

IR (neat): \tilde{v} /cm⁻¹ 3325, 2921, 1692, 1540, 1474, 1439, 1381, 1279, 1175, 1127, 931, 889, 843, 703, 595.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₃₆H₄₃F₁₂N₂O₁₀S₂ 955.2162, observed 955.2212 (5.2 ppm).

Chemical Formula: $C_{36}H_{42}F_{12}N_2O_{10}S_2$ Exact Mass: 954.2089

According to general procedure, **3h** (C_2 -trans) was obtained as a colorless oil (13% yield).

R_f = 0.42 (SiO₂, DCM/MeOH 95:5).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.26 (s, 2H), 8.00 (d, *J* = 1.6 Hz, 4H), 7.35 (s, 2H), 4.24 (d, *J* = 2.3 Hz, 2H), 4.01 – 3.96 (m, 2H), 3.93 – 3.89 (m, 3H), 3.88 – 3.79 (m, 9H), 3.74 – 3.66 (m, 6H), 3.54 (dt, *J* = 10.3, 2.5 Hz, 2H), 3.22 – 3.12 (m, 2H), 2.98 – 2.78 (m, 8H).

¹³**C NMR** (126 MHz, CDCl₃) δ 168.8 (2 C), 139.1 (2 C), 131.8 (q, *J* = 33.6 Hz, 4 C), 123.2 (q, *J* = 273.3 Hz, 4 C), 118.9 (4 CH), 117.3 (2 CH), 81.6 (2 CH), 80.4 (2 CH), 71.2 (2 CH₂), 70.3 (2 CH₂), 69.9 (2 CH₂), 69.2 (2 CH₂), 61.1 (2 CH₂), 36.5 (2 CH₂), 31.0 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.82.

IR (neat): \tilde{v} /cm⁻¹ 3320, 2938, 1737, 1542, 1381, 1280, 1177.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for $C_{36}H_{43}F_{12}N_2O_{10}S_2$ 955.2162, observed 955.2150 (-1.3 ppm).

Exact Mass: 954.2089

According to general procedure, **3h** (C_1) was obtained as a colorless oil (31% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.26$ (SiO₂, DCM/MeOH 95:5).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.80 (s, 1H), 9.35 (s, 1H), 8.14 (s, 2H), 8.04 (s, 2H), 7.53 (s, 2H), 4.28 (dd, *J* = 14.8, 2.8 Hz, 2H), 4.16 – 4.02 (m, 2H), 3.97 – 3.79 (m, 8H), 3.74 (q, *J* = 6.2 Hz, 4H), 3.71 – 3.63 (m, 4H), 3.63 – 3.52 (m, 3H), 3.46 (m, 1H), 2.88 (m, 1H), 2.82 – 2.66 (m, 6H), 2.57 (s, 1H), 2.43 (br s, 1H), 2.21 (br s, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.6 (C), 169.7 (C), 139.3 (2 C), 132.1 (q, *J* = 33.3 Hz, 4 C), 123.3 (q, *J* = 273.4 Hz, 4 C), 119.9 (2 CH), 119.4 (2 CH), 117.7 (CH), 117.5 (CH), 82.0 (CH), 80.8 (CH), 80.6 (CH), 80.5 (CH), 71.6 (CH₂), 71.1 (CH₂), 70.9 (CH₂), 70.8 (CH₂), 70.5 (CH₂), 69.9 (CH₂), 68.8 (CH₂), 68.7 (CH₂), 61.2 (CH₂), 60.9 (CH₂), 36.5 (CH₂), 35.8 (CH₂), 31.9 (CH₂), 31.5 (CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.86, -62.94.

IR (neat): \tilde{v} /cm⁻¹ 3314, 2922, 1691, 1544, 1473, 1441, 1382, 1279, 1175, 1128, 934, 888, 845, 732, 704, 683.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₃₆H₄₃F₁₂N₂O₁₀S₂ 955.2162, observed 955.2150 (-1.3 ppm).

4. Et₃B-mediated thiol-ene reactions

4.1 General Procedure

To a flame-dried flask was added the staring macrocycle (0.1 mmol, 1.0 equiv.), TBC (3.2 equiv.) and thiolacetic acid (4.0 equiv.). The flask was evacuated and backfilled with nitrogen three times. Dichloromethane (0.15 mL) was added under nitrogen, followed by the dropwise addition of Et₃B (3.2 equiv., 1.0 M in hexane). The nitrogen flow was then stopped and replaced with a CaCl₂ guard tube and the reaction mixture was stirred at room temperature for 2.0 h. Upon completion, the mixture was filtered through a pad of basic alumina and the resulting solution was concentrated and then purified by Prep. TLC, giving the corresponding C_2 -trans product (30 mg, 31% yield), C_1 product (25 mg, 26%) and C_2 -cis product (21 mg, 22% yield).

The corresponding NMR data is consistent with previous study using photo-induced method.

1: C₂-trans product; 2: C₁ product; 3: C₂-cis product.

5. Substrate scope

5.1 Characterization of 5

Exact Mass: 982.2047

According to general procedure, $5 (C_2$ -*cis*) was obtained (41% yield).

R_f = 0.41 (SiO₂, DCM/MeOH 99:1).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.67 (s, 2H), 8.03 (s, 4H), 7.56 (s, 2H), 4.20 (d, *J* = 2.1 Hz, 2H), 3.89 (ddd, *J* = 7.4, 6.4, 2.0 Hz, 2H), 3.81 – 3.71 (m, 6H), 3.65 – 3.58 (m, 2H), 2.87 – 2.68 (m, 12H), 1.80 – 1.63 (m, 14H).

¹³**C NMR** (126 MHz, CDCl₃) δ 168.9 (2 C), 138.7 (2 C), 132.5 (q, *J* = 33.5 Hz, 4 C), 123.1 (q, *J* = 273.3 Hz, 4 C), 119.3 (4 CH), 117.9 (2 CH), 81.0 (2 CH), 80.9 (2 CH), 72.2 (2 CH₂), 70.7 (2 CH₂), 37.2 (2 CH₂), 31.6 (2 CH₂), 29.6 (4 CH₂), 24.8 (2 CH₂), 23.7 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.97.

IR (neat): \tilde{v} /cm⁻¹ 3372, 2929, 1693, 1621, 1532, 1472, 1438, 1380, 1277, 1174, 1129, 1005, 933, 886, 845, 736, 702, 682, 495, 489, 474, 465, 453.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for $C_{38}H_{46}F_{12}N_2O_6S_4$ 983.2120, observed 983.2082 (-3.8 ppm).

5.2 Characterization of 6

Chemical Formula: $C_{36}H_{42}F_{12}N_2O_6S_4$ Exact Mass: 954.1734

According to general procedure, $6 (C_2$ -cis) was obtained (32% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.37$ (SiO₂, DCM/Et₂O 99:1).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.79 (s, 2H), 8.07 (s, 4H), 7.62 (s, 2H), 4.20 (d, J = 1.9 Hz, 2H), 3.93 (td, J = 6.9, 1.9 Hz, 2H), 3.87 – 3.74 (m, 6H), 3.67 (ddd, J = 9.4, 7.0, 4.9 Hz, 2H), 2.90 – 2.62 (m, 12H), 1.98 – 1.88 (m, 2H), 1.87 – 1.71 (m, 6H), 1.68 (t, J = 8.0 Hz, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 168.9 (2 C), 138.7 (2 C), 132.6 (q, J = 33.5 Hz, 4 C), 123.2 (q, J = 273.2 Hz, 4 C), 119.6 (4 CH), 118.0 (2 CH), 81.5 (2 CH), 80.8 (2 CH), 72.5 (2 CH₂), 70.9 (2 CH₂), 37.1 (2 CH₂), 31.7 (2 CH₂), 27.0 (2 CH₂), 26.4 (2 CH₂), 24.7 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.97.

IR (neat): \tilde{v} /cm⁻¹ 3369, 2929, 1690, 1621, 1535, 1472, 1439, 1380, 1276, 1174, 1128, 1006, 909, 887, 845, 732, 702, 682, 648, 558, 515, 496, 485, 469, 457, 451.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₃₆H₄₃F₁₂N₂O₆S₄ 955.1807, observed 955.1800 (-0.7 ppm).

Chemical Formula: $C_{36}H_{42}F_{12}N_2O_6S_4$ Exact Mass: 954.1734

According to general procedure, $\mathbf{6}$ (C_1) was obtained (10% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.23$ (SiO₂, DCM/Et₂O 99:1).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.89 (s, 1H), 8.76 (s, 1H), 8.15 (s, 1H), 8.06 (s, 1H), 7.65 (s, 1H), 7.63 (s, 1H), 4.31 (d, J = 2.0 Hz, 1H), 4.11 (d, J = 4.5 Hz, 1H), 4.00 (td, J = 6.8, 2.0 Hz, 1H), 3.90 (m, 1H), 3.84 – 3.72 (m, 6H), 3.67 (m, 1H), 3.53 (dt, J = 8.7, 5.8 Hz, 1H), 2.88 – 2.65 (m, 13H), 1.90 – 1.70 (m, 6H), 1.69 – 1.61 (m, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.3 (C), 169.2 (C), 138.8 (C), 138.7 (C), 132.7 (q, *J* = 33.6 Hz, 2 C), 132.6 (q, *J* = 33.6 Hz, 2 C), 123.2 (q, *J* = 273.8 Hz, 4 C), 119.51 (2 CH), 119.48 (2 CH), 118.1 (2 CH), 81.8 (CH), 81.4 (CH), 80.8 (CH), 80.5 (CH), 73.3 (2 CH₂), 71.8 (CH₂), 70.4 (CH₂), 37.1 (CH₂), 37.0 (CH₂), 33.3 (CH₂) 31.6 (CH₂), 27.9 (CH₂), 27.1 (CH₂), 26.3 (CH₂), 25.9 (CH₂), 24.9 (CH₂), 24.7 (CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.90, -62.99.

IR (neat): \tilde{v} /cm⁻¹ 3345, 2929, 1691, 1536, 1473, 1440, 1381, 1278, 1176, 1131, 887, 702.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for $C_{36}H_{43}F_{12}N_2O_6S_4$ 955.1807, observed 955.1777 (-3.2 ppm).

5.3 Characterization of 7

Chemical Formula: $C_{30}H_{44}N_4O_8S_4$ Exact Mass: 716.2042

According to general procedure, **7** was obtained as a colorless oil (mixture of C_2 -*cis* and C_1 products, 73% overall yield, $dr (C_2$ -*cis*/ C_1) 3.2:1).

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (SiO₂, DCM/MeOH 95:5).

The NMR data showed here is the major C_2 -cis product.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.26 (s, 2H), 8.39 – 8.32 (m, 4H), 7.51 – 7.47 (m, 4H), 4.26 (d, *J* = 2.3 Hz, 2H), 4.00 – 3.63 (m, 15H), 3.59 – 3.53 (m, 2H), 3.41 (m, 1H), 2.98 – 2.67 (m, 12H), 1.73 (t, *J* = 7.9 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 169.2 (2 C), 150.6 (4 CH), 144.4 (2 C), 113.6 (4 CH), 81.7 (2 CH), 81.4 (2 CH), 71.1 (2 CH₂), 70.8 (2 CH₂), 70.43 (2 CH₂), 70.37 (2 CH₂), 37.3 (2 CH₂), 32.0 (2 CH₂), 24.9 (2 CH₂).

IR (neat): \tilde{v} /cm⁻¹ 3329, 3040, 2920, 1691, 1586, 1509, 1413, 1331, 1269, 1208, 1092, 992, 920, 860, 826, 730, 699, 613, 591.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₃₀H₄₅N₄O₈S₄ 717.2115, observed 717.2150 (4.9 ppm).

5.4 Characterization of 8

 $\begin{array}{c} \mbox{Chemical Formula: } C_{30}H_{44}N_4O_8S_4\\ \mbox{Exact Mass: 716.2042} \end{array}$

According to general procedure, **8** was obtained as a colorless oil (mixture of C_2 -*cis* and C_1 products, 64% overall yield, $dr (C_2$ -*cis*/ C_1) 3.3:1).

 $\mathbf{R}_{f} = 0.32$ (SiO₂, DCM/MeOH 95:5).

The NMR data showed here is the major C_2 -*cis* product.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.21 (s, 2H), 8.70 (d, *J* = 2.6 Hz, 2H), 8.29 (dd, *J* = 4.8, 1.5 Hz, 2H), 8.13 (ddd, *J* = 8.3, 2.7, 1.5 Hz, 2H), 7.17 (dd, *J* = 8.3, 4.7 Hz, 2H), 4.26 (d, *J* = 2.2 Hz, 2H), 3.93 – 3.54 (m, 18H), 2.91 – 2.64 (m, 12H), 1.73 (t, *J* = 7.9 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.9 (2 C), 145.3 (2 CH), 141.6 (2 CH), 134.5 (2 C), 126.8 (2 CH), 123.5 (2 CH), 81.9 (2 CH), 81.7 (2 CH), 70.9 (2 CH₂), 70.8 (2 CH₂), 70.7 (2 CH₂), 70.4 (2 CH₂), 37.2 (2 CH₂), 32.2 (2 CH₂), 24.9 (2 CH₂).

IR (neat): \tilde{v} /cm⁻¹ 3328, 3044, 2910, 1679, 1588, 1527, 1482, 1422, 1331, 1272, 1192, 1095, 943, 921, 805, 732, 707, 624.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₃₀H₄₅N₄O₈S₄ 717.2115, observed 717.2098 (-2.3 ppm).

5.5 Characterization of 9

Chemical Formula: C₂₈H₄₂N₆O₈S₄ Exact Mass: 718.1947

According to general procedure, **9** was obtained as colorless oil (mixture of C_2 -*cis* and C_1 products, 70% overall yield, *dr* (C_2 -*cis*/ C_1) 4.0:1).

R_f = 0.55 (SiO₂, DCM/MeOH 95:5).

The NMR data showed here is the major C_2 -cis product.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.42 (s, 2H), 9.04 (s, 4H), 8.88 (s, 2H), 4.23 (d, *J* = 2.3 Hz, 2H), 3.92 – 3.53 (m, 18H), 3.02 – 2.74 (m, 12H), 1.75 (t, *J* = 8.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.9 (2 C), 154.1 (2 CH), 147.5 (4 CH), 133.3 (2 C), 81.5 (2 CH), 81.4 (2 CH), 70.8 (2 CH₂), 70.6 (2 CH₂), 70.3 (2 CH₂), 70.2 (2 CH₂), 37.4 (2 CH₂), 31.9 (2 CH₂), 25.0 (2 CH₂).

IR (neat): \tilde{v}/cm^{-1} 3311, 3044, 2915, 1685, 1577, 1520, 1430, 1343, 1271, 1189, 1092, 921, 901, 826, 722, 699, 624.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₂₈H₄₃N₆O₈S₄ 719.2020, observed 719.2026 (0.8 ppm).

5.6 Characterization of 10

According to general procedure, $10 (C_2$ -cis) was obtained as a colorless oil (25% yield).

R_f = 0.25 (SiO₂, DCM/MeOH 95:5).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.45 (s, 2H), 8.33 – 8.30 (m, 2H), 8.21 (d, *J* = 8.3 Hz, 2H), 7.68 (td, *J* = 8.5, 8.0, 2.0 Hz, 2H), 7.03 (ddd, *J* = 7.4, 4.9, 1.0 Hz, 2H), 4.34 (d, *J* = 3.4 Hz, 2H), 4.00 – 3.74 (m, 10H), 3.68 – 3.47 (m, 8H), 2.87 – 2.66 (m, 10H), 2.57 (dd, *J* = 13.5, 7.5 Hz, 2H), 1.69 (t, *J* = 7.9 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 170.1 (2 C), 151.6 (2 C), 148.0 (2 CH), 138.1 (2 CH), 119.8 (2 CH), 114.6 (2 CH), 80.8 (2 CH), 80.6 (2 CH), 71.5 (2 CH₂), 70.9 (2 CH₂), 70.7 (2 CH₂), 70.5 (2 CH₂), 37.0 (2 CH₂), 32.2 (2 CH₂), 24.9 (2 CH₂).

IR (neat): \tilde{v}/cm^{-1} 3326, 2916, 1696, 1576, 1524, 1435, 1302, 1112, 780, 616.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₃₀H₄₅N₄O₈S₄ 717.2115, observed 717.2095 (-2.8 ppm).

Exact Mass: 716.2042

According to general procedure, **10** (C_2 -*trans*) was obtained as a colorless oil (14% yield). **R**_f = 0.33 (SiO₂, DCM/MeOH 95:5). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.25 (s, 2H), 8.29 (ddd, J = 4.9, 1.9, 0.9 Hz, 2H), 8.21 (dt, J = 8.4, 1.0 Hz, 2H), 7.70 (ddd, J = 8.7, 7.3, 1.9 Hz, 2H), 7.05 (ddd, J = 7.4, 4.9, 1.1 Hz, 2H), 4.52 (d, J = 2.1 Hz, 2H), 4.12 – 3.94 (m, 6H), 3.88 (ddd, J = 11.4, 3.6, 2.3 Hz, 2H), 3.82 – 3.74 (m, 4H), 3.74 – 3.64 (m, 4H), 3.58 – 3.51 (m, 2H), 2.86 – 2.74 (m, 6H), 2.73 – 2.58 (m, 6H), 1.69 (t, J = 8.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 169.5 (2 C), 151.0 (2 C), 148.2 (2 CH), 138.5 (2 CH), 120.2 (2 CH), 114.0 (2 CH), 82.4 (2 CH), 82.3 (2 CH), 71.54 (2 CH₂), 71.46 (2 CH₂), 71.3 (2 CH₂), 71.2 (2 CH₂), 37.0 (2 CH₂), 32.4 (2 CH₂), 24.8 (2 CH₂).

IR (neat): \tilde{v} /cm⁻¹ 3383, 2920, 1690, 1575, 1515, 1434, 1349, 1302, 1204, 1105, 943, 780, 737, 700.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₃₀H₄₅N₄O₈S₄ 717.2115, observed 717.2089 (-3.6 ppm).

Exact Mass: 716.2042

According to general procedure, $10 (C_1)$ was obtained as a colorless oil (14% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.51$ (SiO₂, DCM/MeOH 95:5).

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.62 (s, 1H), 9.35 (s, 1H), 8.32 (tdd, J = 4.9, 2.0, 0.9 Hz, 2H), 8.27 (dt, J = 8.4, 1.0 Hz, 1H), 8.21 (dt, J = 8.3, 1.0 Hz, 1H), 7.75 – 7.65 (m, 2H), 7.04 (dddd, J = 16.8, 7.4, 4.9, 1.0 Hz, 2H), 4.50 (d, J = 3.3 Hz, 1H), 4.35 (d, J = 2.5 Hz, 1H), 4.13 (m, 1H), 4.02 – 3.67 (m, 13H), 3.60 – 3.43 (m, 4H), 2.86 (dd, J = 13.4, 5.9 Hz, 1H), 2.83 – 2.63 (m, 10H), 2.59 (dd, J = 13.4, 7.7 Hz, 1H), 1.77 – 1.64 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 170.2 (C), 169.6 (C), 151.5 (C), 151.2 (C), 148.3 (CH), 148.0 (CH), 138.4 (CH), 138.2 (CH), 120.1 (CH), 119.8 (CH), 114.23 (CH), 114.21 (CH), 82.9 (CH), 82.0 (CH), 81.8 (CH), 80.4 (CH), 71.3 (CH₂), 71.22 (CH₂), 71.19 (CH₂), 71.1 (CH₂), 71.0 (CH₂), 70.9 (CH₂), 70.7 (CH₂), 70.6 (CH₂), 37.1 (CH₂), 37.0 (CH₂), 33.2 (CH₂), 31.9 (CH₂), 24.8 (2 CH₂).

IR (neat): \tilde{v}/cm^{-1} 3319, 2919, 1689, 1575, 1516, 1461, 1433, 1345, 1300, 1196, 1100, 996, 957, 779, 734, 701.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₃₀H₄₅N₄O₈S₄ 717.2115, observed 717.2092 (-3.2 ppm).

5.7 Characterization of 11

Chemical Formula: $C_{40}H_{50}N_2O_8S_4$ Exact Mass: 814.2450

According to general procedure, **11** was obtained as a colorless oil (mixture of C_2 -*cis* and C_1 products, 59% overall yield, $dr (C_2$ -*cis*/ C_1) 1.6:1).

 $\mathbf{R}_{\mathbf{f}} = 0.57$ (SiO₂, DCM/MeOH 97:3).

The NMR data showed here is the major C_2 -cis product.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.26 (s, 2H), 8.03 – 7.95 (m, 4H), 7.85 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.52 – 7.47 (m, 6H), 4.47 (d, *J* = 2.0 Hz, 2H), 4.06 – 3.75 (m, 18H), 2.86 – 2.60 (m, 12H), 1.67 (t, *J* = 8.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.8 (2 C), 134.2 (2 C), 132.2 (2 C), 128.8 (2 CH), 127.0 (2 CH), 126.3 (2 CH), 126.1 (2 CH), 125.9 (2 CH), 125.8 (2 CH), 121.1 (2 CH), 120.0 (2 CH), 82.5 (2 CH), 82.1 (2 CH), 71.4 (2 CH₂), 71.0 (2 CH₂), 70.69 (2 CH₂), 70.66 (2 CH₂), 37.1 (2 CH₂), 32.1(2 CH₂), 24.8 (2 CH₂).

IR (neat): \tilde{v} /cm⁻¹ 3330, 3051, 2905, 1678, 1597, 1529, 1497, 1436, 1401, 1346, 1262, 1210, 1096, 931, 794, 771, 733, 699, 629, 606.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₄₀H₅₁N₂O₈S₄ 815.2523, observed 815.2501 (-2.6 ppm).

5.8 Characterization of 12

According to general procedure, using however degassed THF instead of toluene as solvent, 12 $(C_2$ -*cis*) was obtained as a yellow solid (37% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (SiO₂, DCM/MeOH 96:4).

m.p.: 112-114 °C

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.66 (s, 2H), 8.21 (d, *J* = 8.3 Hz, 2H), 8.12 (dd, *J* = 8.2, 3.9 Hz, 4H), 8.06 (d, *J* = 7.5 Hz, 2H), 7.99 – 7.88 (m, 10H), 4.48 (d, *J* = 2.1 Hz, 2H), 4.10 – 3.89 (m, 14H), 3.86 – 3.80 (m, 2H), 3.76 (dt, *J* = 11.2, 2.7 Hz, 2H), 2.82 – 2.69 (m, 8H), 2.65 – 2.56 (m, 4H), 1.62 (t, *J* = 8.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 169.0 (2 C), 131.4 (2 C), 130.9 (2 C), 130.2 (2 C), 129.1 (2 C), 127.7 (2 CH), 127.4 (2 CH), 126.8 (2 CH), 126.2 (2 CH), 125.4 (2 CH), 125.2 (2 CH), 125.1 (2 CH), 125.0 (2 C), 124.7 (2 C), 123.6 (2 C), 121.8 (2 CH), 121.0 (2 CH), 82.9 (2 CH), 82.0 (2 CH), 71.5 (2 CH₂), 71.2 (4 CH₂), 70.8 (2 CH₂), 37.2 (2 CH₂), 32.2 (2 CH₂), 24.8 (2 CH₂).

IR (neat): \tilde{v} /cm⁻¹ 3372, 3043, 2919, 1750, 1678, 1600, 1555, 1518, 1488, 1415, 1348, 1309, 1268, 1189, 1101, 918, 844, 760, 733, 714.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₅₂H₅₅N₂O₈S₄ 963.2836, observed 963.2873 (3.9 ppm).

According to general procedure, using however degassed THF instead of toluene as solvent, 12 (C_1) was obtained as a yellow solid (17% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (SiO₂, DCM/MeOH 96:4).

m.p.: 116-118 °C

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.97 (s, 1H), 9.55 (s, 1H), 8.46 – 8.36 (m, 3H), 8.31 (d, *J* = 8.2 Hz, 1H), 8.20 – 8.09 (m, 6H), 8.09 – 7.94 (m, 8H), 4.40 (d, *J* = 6.2 Hz, 1H), 4.26 (d, *J* = 2.4 Hz, 1H), 4.15 (m, 1H), 4.08 (m, 1H), 4.04 – 3.88 (m, 10H), 3.87 – 3.78 (m, 3H), 3.77 – 3.68 (m, 3H), 2.40 – 2.16 (m, 4H), 2.13 – 2.06 (m, 2H), 2.04 – 1.84 (m, 6H), 1.27 – 1.20 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 170.6 (C), 170.0 (C), 131.4 (2 C), 131.1 (C), 130.9 (C), 130.83 (C), 130.77 (C), 129.5 (C), 129.4 (C), 127.7 (CH), 127.6 (CH) 127.4 (2 CH), 127.21 (CH), 127.19 (CH), 126.4 (CH), 126.3 (CH), 125.6 (CH), 125.5 (CH), 125.4 (CH), 125.3 (CH), 125.21 (CH), 125.18 (CH), 125.14 (C), 125.09 (C), 125.0 (C), 124.84 (C), 124.79 (C), 124.7 (C), 123.4 (CH), 122.9 (CH), 122.4 (CH), 122.3 (CH), 81.9 (CH), 81.3 (CH), 81.2 (CH), 81.0 (CH), 72.8 (CH₂), 72.2 (CH₂), 71.0 (CH₂), 70.6 (CH₂), 70.3 (CH₂), 70.0 (CH₂), 69.3 (CH₂), 68.9 (CH₂), 36.6 (CH₂), 36.5 (CH₂), 33.4 (CH₂), 30.8 (CH₂), 24.2 (2 CH₂).

IR (neat): \tilde{v} /cm⁻¹ 3308, 3044, 2921, 1678, 1600, 1555, 1518, 1490, 1416, 1267, 1188, 1102, 962, 844, 760, 733, 714, 610.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₅₂H₅₅N₂O₈S₄ 963.2836, observed 963.2867 (3.2 ppm).

5.9 Characterization of 13

Exact Mass: 890.2763

According to general procedure, $13 (C_2$ -*cis*) was obtained (38% yield).

 $\mathbf{R_f} = 0.45$ (SiO₂, DCM/MeOH 97:3).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.09 (s, 2H), 7.89 (s, 2H), 7.62 (d, *J* = 7.5 Hz, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 6.4 Hz, 4H), 7.32 (t, *J* = 6.9 Hz, 2H), 7.24 (td, *J* = 7.4, 1.1 Hz, 2H), 4.34 (d, *J* = 2.1 Hz, 2H), 3.96 – 3.94 (m, 2H), 3.94 – 3.89 (m, 5H), 3.87 – 3.80 (m, 4H), 3.78 – 3.68 (m, 8H), 3.66 – 3.60 (m, 3H), 2.94 – 2.82 (m, 8H), 2.77 – 2.71 (m, 4H), 1.78 – 1.68 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.1 (2 C), 144.3 (2 C), 143.3 (2 C), 141.5 (2 C), 138.0 (2 C), 136.5 (2 C), 126.8 (2 CH), 126.3 (2 CH), 125.0 (2 CH), 120.1 (2 CH), 119.6 (2 CH), 118.4 (2 CH), 116.5 (2 CH), 82.0 (2 CH), 81.7 (2 CH), 71.2 (2 CH₂), 70.9 (2 CH₂), 70.8 (2 CH₂), 70.7 (2 CH₂), 37.3 (2 CH₂), 37.0 (2 CH₂), 32.3 (2 CH₂), 25.0 (2 CH₂).

IR (neat): \tilde{v} /cm⁻¹ 3345, 2920, 1676, 1593, 1535, 1492, 1460, 1424, 1350, 1311, 1100, 650, 830, 767, 734.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₄₆H₅₅N₂O₈S₄ 891.2836, observed 891.2825 (-1.2 ppm).

 $\begin{array}{l} \mbox{Chemical Formula: } C_{46}H_{54}N_2O_8S_4\\ \mbox{Exact Mass: 890.2763} \end{array}$

According to general procedure, $13 (C_1)$ was obtained (18% yield).

 $\mathbf{R}_{f} = 0.49$ (SiO₂, DCM/MeOH 97:3).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.50 (s, 1H), 9.08 (s, 1H), 7.93 (d, J = 7.7 Hz, 2H), 7.73 – 7.63 (m, 4H), 7.55 (dd, J = 8.1, 2.0 Hz, 1H), 7.52 – 7.45 (m, 3H), 7.39 – 7.32 (m, 2H), 7.27 (m, 1H), 7.25 (m, 1H), 4.25 (d, J = 5.0 Hz, 1H), 4.17 (d, J = 2.1 Hz, 1H), 4.11 – 4.03 (m, 2H), 4.00 – 3.91 (m, 4H), 3.87 – 3.71 (m, 11H), 3.65 (dd, J = 9.3, 4.8 Hz, 1H), 3.61 – 3.44 (m, 4H), 2.79 – 2.52 (m, 11H), 2.28 (dd, J = 13.4, 8.8 Hz, 1H), 1.66 – 1.60 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 169.6 (C), 169.2 (C), 144.3 (C), 144.2 (C), 143.4 (C), 143.3 (C), 141.5 (C), 141.5 (C), 138.4 (C), 138.2 (C), 136.8 (C), 136.6 (C), 126.9 (2 CH), 126.5 (2 CH), 125.13 (CH), 125.11 (CH), 120.1 (CH), 120.0 (CH), 119.8 (CH), 119.70 (CH), 119.67 (CH), 119.5 (CH), 117.8 (CH), 117.4 (CH), 82.5 (CH), 81.3 (CH), 81.0 (CH), 80.8 (CH), 72.1 (CH₂), 71.7 (CH₂), 71.5 (CH₂), 71.0 (CH₂), 70.33 (CH₂), 70.27 (CH₂), 69.8 (CH₂), 68.5 (CH₂), 37.3 (CH₂), 37.2 (CH₂), 37.0 (CH₂), 36.8 (CH₂), 33.5 (CH₂), 31.9 (CH₂), 24.8 (2 CH₂).

IR (neat): \tilde{v}/cm^{-1} 3321, 2922, 1677, 1592, 1535, 1460, 1424, 1348, 1310, 1264, 1102, 952, 872, 828, 767, 733.

HR-MS (ESI) $[M+H]^+ m/z$ calculated for C₄₆H₅₅N₂O₈S₄ 891.2836, observed 891.2857 (2.4 ppm).
6. Deprotection of the acetyl groups

To a solution of macrocycle (1.0 equiv.) in a mixture of degassed MeOH/THF/H₂O (1.5/1.5/1) was added K_2CO_3 (4.0 equiv.) under nitrogen atmosphere. The mixture was then stirred at room temperature for 2 hours. Upon competition, a saturated aqueous NH₄Cl solution and DCM were added and the mixture was stirred for 1 h. The layers were separated and the aqueous phase was extracted with DCM (three times). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by prep. TLC, affording the corresponding macrocyclic dithiol.

Chemical Formula: $C_{32}H_{34}F_{12}N_2O_8S_2$ Exact Mass: 866.1565

According to general procedure, C2-trans product was obtained as a white solid (20 mg, 58% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.27$ (SiO₂, DCM/MeOH 98:2).

m.p.: 185-186 °C

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.18 (s, 2H), 8.25 (s, 4H), 7.62 (s, 2H), 4.39 (d, *J* = 2.1 Hz, 2H), 3.82 (ddd, *J* = 9.5, 5.2, 2.1 Hz, 2H), 3.80 – 3.69 (m, 6H), 3.67 (ddd, *J* = 10.2, 7.9, 2.1 Hz, 2H), 3.63 – 3.56 (m, 2H), 3.55 – 3.45 (m, 4H), 3.43 – 3.34 (m, 2H), 3.10 (ddd, *J* = 13.8, 10.8, 9.5 Hz, 2H), 3.01 (ddd, *J* = 13.8, 6.4, 5.2 Hz, 2H), 1.46 (dd, *J* = 10.7, 6.4 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.8 (2 C), 139.3 (2 C), 132.1 (q, *J* = 33.4 Hz, 4 C), 123.5 (q, *J* = 273.3 Hz, 4 C), 120.0 (4 CH), 117.5 (2 CH), 83.0 (2 CH), 80.2 (2 CH), 71.2 (2 CH₂), 70.0 (2 CH₂), 69.7 (2 CH₂), 68.8 (2 CH₂), 24.1 (2 CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.76.

IR (neat): \tilde{v} /cm⁻¹ 2921, 1691, 1542, 1473, 1442, 1382, 1279, 1177, 1130, 887, 682, 565, 523.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{32}H_{38}F_{12}N_3O_8S_2$ 884.1903, observed 884.1933 (3.4 ppm).

Chemical Formula: $C_{32}H_{34}F_{12}N_2O_8S_2$ Exact Mass: 866.1565

According to general procedure, C_1 product was obtained as a white solid (21 mg, 61% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.42$ (SiO₂, DCM/MeOH 98:2).

m.p.: 127-128 °C

¹**H NMR** (500 MHz, Chloroform-*d*) δ 9.90 (s, 1H), 9.35 (s, 1H), 8.11 (d, *J* = 1.6 Hz, 2H), 8.03 (s, 2H), 7.52 (d, *J* = 4.8 Hz, 2H), 4.35 (d, *J* = 2.0 Hz, 1H), 4.24 (d, *J* = 4.4 Hz, 1H), 4.00 (ddd, *J* = 9.4, 5.2, 2.0 Hz, 1H), 3.97 – 3.88 (m, 4H), 3.88 – 3.76 (m, 5H), 3.73 – 3.60 (m, 6H), 3.56 (dt, *J* = 10.0, 2.2 Hz, 1H), 3.52 (ddd, *J* = 11.4, 4.6, 1.8 Hz, 1H), 2.91 – 2.76 (m, 2H), 2.61 (dt, *J* = 13.1, 9.8 Hz, 1H), 2.44 (s, 1H), 1.44 – 1.36 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.5 (C), 169.6 (C), 139.34 (C), 139.37 (C), 132.1 (q, *J* = 33.3 Hz, 4 C), 123.2 (q, *J* = 273.5 Hz, 4 C), 120.1 (2 CH), 119.6 (2 CH), 117.8 (CH), 117.6 (CH), 83.24 (CH), 83.18 (CH), 81.2 (CH), 80.1 (CH), 71.8 (CH₂), 71.3 (CH₂), 70.7 (CH₂), 70.4 (CH₂), 70.24 (CH₂), 70.16 (CH₂), 69.0 (CH₂), 68.8 (CH₂), 24.5 (CH₂), 23.9 (CH₂).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.85, -62.96.

IR (neat): \tilde{v}/cm^{-1} 3315, 2924, 1691, 1622, 1543, 1472, 1441, 1381, 1277, 1174, 1126, 933, 887, 845, 733, 704, 682, 589, 510.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{32}H_{38}F_{12}N_3O_8S_2$ 884.1903, observed 884.1896 (-0.8 ppm).

Exact Mass: 866.1565

According to general procedure, C₂-cis was obtained as a white solid (38 mg, 38% yield).

 $\mathbf{R}_{\mathbf{f}} = 0.83$ (SiO₂, DCM/MeOH 98:2).

m.p.: 176-177 °C

¹**H** NMR (500 MHz, Chloroform-*d*) δ 9.37 (s, 2H), 7.99 (d, *J* = 1.6 Hz, 4H), 7.32 (s, 2H), 4.29 (d, *J* = 2.5 Hz, 2H), 3.99 (ddd, *J* = 10.5, 2.8, 1.8 Hz, 2H), 3.95 – 3.87 (m, 4H), 3.83 – 3.71 (m, 8H), 3.69 – 3.64 (m, 2H), 3.55 – 3.51 (m, 2H), 3.11 (dt, *J* = 14.0, 9.6 Hz, 2H), 2.86 (ddd, *J* = 14.0, 8.7, 5.3 Hz, 2H), 1.71 – 1.65 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 168.7 (2 C), 139.0 (2 C), 131.6 (q, *J* = 33.4 Hz, 4 C), 123.1 (q, *J* = 273.5 Hz, 4 C), 118.8 (4 CH), 117.1 (2 CH), 83.8 (2 CH), 79.4 (2 CH), 71.0 (2CH₂), 70.3 (2CH₂), 69.8 (2CH₂), 69.1 (2CH₂), 23.2 (2CH₂).

¹⁹**F** NMR (282 MHz, CDCl₃) δ -62.87.

IR (neat): \tilde{v} /cm⁻¹ 3329, 2922, 1691, 1538, 1473, 1439, 1380, 1278, 1175, 1127, 928, 888, 735, 703, 682, 527.

HR-MS (ESI) $[M+NH_4]^+ m/z$ calculated for $C_{32}H_{38}F_{12}N_3O_8S_2$ 867.1638, observed 867.1630 (-0.9 ppm).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

7.2 Spectra of 3b

51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 f1 (ppm)

7.4 Spectra of 3d (*C***₂-***cis***)**

7.5 Spectra of 3e (*C*₂-*cis*)

7.6 Spectra of 3f

-56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -7 f1 (ppm)

^{-60.2 -60.4 -60.6 -61.8 -61.0 -61.2 -61.4 -61.6 -61.8 -62.0 -62.2 -62.4 -62.6 -63.0 -63.2 -63.4 -63.6 -63.8 -64.0 -64.2 -64.4 -64.6 -64.8 -65.0 -65.2 -65.4 -65.6 -65} f1 (ppm)

5.5 5.0 f1 (ppm)

7.12 Spectra of 8

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

				· · ·			1 1	· · · ·										·		
190	180	170	160	150	140	130	120	110	100 f1	90 (mgg)	80	70	60	50	40	30	20	10	0	-10

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1 1		· ·	- · ·								- · ·			- · ·			- · ·		1 1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ri (ppm)										

7.18 Deprotection of the acetyl groups (compound 4)

8. X-ray

8.1 C₂-trans_3b

Table 1. Crystal data and structure refinement for C_2 -*trans*_3b.

Empirical formula	C36 H38 F12 N2 O10	C36 H38 F12 N2 O10 S2						
Formula weight	950.80	950.80						
Temperature	180.15 K	180.15 K						
Wavelength	1.54184 Å	1.54184 Å						
Crystal system	Monoclinic							
Space group	P 1 21/n 1							
Unit cell dimensions	a = 9.6208(2) Å	<i>α</i> = 90°.						
	b = 17.3037(4) Å	$\beta = 94.432(2)^{\circ}.$						
	c = 25.0189(4) Å	$\gamma = 90^{\circ}.$						
Volume	4152.58(15) Å ³							
Z	4							
Density (calculated)	1.521 Mg/m ³	1.521 Mg/m ³						
Absorption coefficient	2.173 mm ⁻¹	2.173 mm ⁻¹						
F(000)	1952	1952						
Crystal size	0.445 x 0.053 x 0.029 r	0.445 x 0.053 x 0.029 mm ³						
Theta range for data collection	3.108 to 73.594°.	3.108 to 73.594°.						
Index ranges	-9<=h<=11, -21<=k<=	21, -30<=l<=30						
Reflections collected	16134	16134						
Independent reflections	8157 [R(int) = 0.0262]	8157 [R(int) = 0.0262]						
Completeness to theta = 67.500°	100.0 %	100.0 %						
Absorption correction	Analytical	Analytical						
Max. and min. transmission	0.949 and 0.629	0.949 and 0.629						
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²						
Data / restraints / parameters	8157 / 2 / 563	8157 / 2 / 563						
Goodness-of-fit on F ²	1.073	1.073						
Final R indices [I>2sigma(I)]	R1 = 0.0883, wR2 = 0.1	R1 = 0.0883, wR2 = 0.2357						
R indices (all data)	R1 = 0.1096, wR2 = 0.2	R1 = 0.1096, $wR2 = 0.2567$						
Extinction coefficient	n/a	n/a						
Largest diff. peak and hole	1.539 and -0.681 e.Å ⁻³	1.539 and -0.681 e.Å ⁻³						

Figure 1- Ortep view of C_2 -*trans*_3b (thermal ellispoids are drawn at 50% probability). Hydrogen atoms are omitted for clarity purpose.

Comments on the structure:

There are two disordered CF_3 groups (around the C3-axes) which were refined in two parts (refined occupancies were ~ 50% each) with constrained isotropic ADPs to be equal.

One C-S-C-O-CH₃ part is also disordered onto 2 positions with refined occupancies 0.6/0.4. Disordered atoms where refined with constrained anisotropic ADPs to be equal and with restrains on bond lengths for carbonyl groups.
8.2 *C*₂-*cis*_3b

Table 1. Crystal data and structure refinement for C	<i>2-cis_</i> 30.		
Empirical formula	C36 H42 F12 N2 O8 S2		
Formula weight	922.83		
Temperature	180.15 K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 8.68201(13) Å	$\alpha = 90^{\circ}$.	
	b = 18.7358(3) Å	$\beta = 97.5197(14)^{\circ}.$	
	c = 25.4056(4) Å	$\gamma = 90^{\circ}$.	
Volume	4097.05(11) Å ³		
Z	4		
Density (calculated)	1.496 Mg/m ³		
Absorption coefficient	2.144 mm ⁻¹		
F(000)	1904		
Crystal size	0.258 x 0.173 x 0.075 mm ³		
Theta range for data collection	2.940 to 73.633°.		
Index ranges	-10<=h<=8, -22<=k<=23, -31<=l<=28		
Reflections collected	28125		
Independent reflections	8173 [R(int) = 0.0258]		
Completeness to theta = 67.500°	100.0 %		
Absorption correction	Analytical		
Max. and min. transmission	0.863 and 0.631		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8173 / 0 / 551		
Goodness-of-fit on F ²	1.056		
Final R indices [I>2sigma(I)]	R1 = 0.0757, wR2 = 0.2015		
R indices (all data)	R1 = 0.0860, wR2 = 0.2133		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.250 and -0.926 e.Å ⁻³		

Table 1. Crystal data and structure refinement for C_2 -*cis* 3b.

Figure 1- Ortep view of C_2 -*cis*_3b (thermal ellispoids are drawn at 50% probability level). Hydrogen atoms are omitted for clarity reasons.

Comments: F atoms (of CF3 groups) are disordered around the C3 axes. Most pathological one were refined by splitting their positions in 2 or 3 parts.

8.3 C₂-trans_4

Table 1 . Crystal data and structure refinement for 0	C_2 -trans_4.		
Empirical formula	C32 H34 F12 N2 O8 S2		
Formula weight	866.73		
Temperature	180.15 K		
Wavelength	1.54184 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.8217(5) Å	α= 83.763(5)°.	
	b = 10.9991(7) Å	$\beta = 77.823(5)^{\circ}.$	
	c = 18.8342(12) Å	$\gamma = 73.022(5)^{\circ}.$	
Volume	1899.8(2) Å ³		
Z	2		
Density (calculated)	1.515 Mg/m ³		
Absorption coefficient	2.273 mm ⁻¹		
F(000)	888		
Crystal size	0.241 x 0.098 x 0.02 mm ³		
Theta range for data collection	4.208 to 73.628°.		
Index ranges	-12<=h<=8, -13<=k<=12, -22<=l<=23		
Reflections collected	12306		
Independent reflections	7433 [R(int) = 0.0230]		
Completeness to theta = 67.500°	99.8 %		
Absorption correction	Analytical		
Max. and min. transmission	0.956 and 0.710		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7433 / 0 / 515		
Goodness-of-fit on F ²	1.054		
Final R indices [I>2sigma(I)]	R1 = 0.0590, wR2 = 0.1536		
R indices (all data)	R1 = 0.0745, $wR2 = 0.1696$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.656 and -0.616 e.Å ⁻³		

Figure 1- Ortep view of C_2 -*trans*_4 (thermal ellipsoids are drawn at 50% probability). Hydrogen atoms are omitted for clarity reasons.

Table 2. Hydrogen bolids for eb256p_abs [A and	Ŭ.
--	----

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2A)O(3)	0.88	2.28	3.063(3)	148.2

Symmetry transformations used to generate equivalent atoms:

8.4 C₂-cis_4

Identification code	eb238p2_abs	eb238p2_abs	
Empirical formula	C32 H34 F12 N2 O8 S2	C32 H34 F12 N2 O8 S2	
Formula weight	866.73	866.73	
Temperature	180.15 K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	C 1 2/c 1		
Unit cell dimensions	a = 18.2004(5) Å	$\alpha = 90^{\circ}$.	
	b = 12.6594(2) Å	$\beta = 121.245(3)^{\circ}.$	
	c = 19.4388(5) Å	$\gamma = 90^{\circ}.$	
Volume	3829.20(19) Å ³		
Z	4		
Density (calculated)	1.503 Mg/m ³	1.503 Mg/m ³	
Absorption coefficient	2.256 mm ⁻¹	2.256 mm ⁻¹	
F(000)	1776	1776	
Crystal size	0.306 x 0.253 x 0.197 m	0.306 x 0.253 x 0.197 mm ³	
Theta range for data collection	4.417 to 73.513°.	4.417 to 73.513°.	
Index ranges	-20<=h<=22, -10<=k<=	-20<=h<=22, -10<=k<=15, -24<=l<=23	
Reflections collected	6955	6955	
Independent reflections	3759 [R(int) = 0.0128]	3759 [R(int) = 0.0128]	
Completeness to theta = 67.500°	99.9 %	99.9 %	
Absorption correction	Analytical	Analytical	
Max. and min. transmission	0.730 and 0.597	0.730 and 0.597	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	3759 / 36 / 310	3759 / 36 / 310	
Goodness-of-fit on F ²	1.053	1.053	
Final R indices [I>2sigma(I)]	R1 = 0.0584, wR2 = 0.13	R1 = 0.0584, $wR2 = 0.1835$	
R indices (all data)	R1 = 0.0630, wR2 = 0.12	R1 = 0.0630, wR2 = 0.1915	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	0.678 and -0.472 e.Å ⁻³	0.678 and -0.472 e.Å ⁻³	

Table 1. Crystal data and structure refinement for C_2 -*cis*_4.

Figure 1- Ortep view of C_2 -*cis*_4 (thermal ellispoids are drawn at 50% probability level). Hydrogen atoms are omitted for clarity reasons.