Electronic Supplementary Information for

Synthesis of 3-acylindoles via copper-mediated oxidative decarbethoxylation of ethyl arylacetates

Anjali Jaiswal, Anup Kumar Sharma and Krishna Nand Singh*

Department of Chemistry (Center of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi-221005, India.

E-mail: knsinghbhu@yahoo.co.in; knsingh@bhu.ac.in

Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. General Information</td>
<td>2</td>
</tr>
<tr>
<td>II. General procedure for the synthesis of products 3</td>
<td>2</td>
</tr>
<tr>
<td>III. Spectral data of the products 3</td>
<td>3-9</td>
</tr>
<tr>
<td>IV. References</td>
<td>9</td>
</tr>
<tr>
<td>V. Copies of 1H, 13C NMR and 19F spectra of the products 3</td>
<td>10-38</td>
</tr>
</tbody>
</table>
I. **General Information:** All the reagents were purchased from Alfa Aesar or Merck, and were used as received. The reactions were monitored by thin layer chromatography (TLC) using Merck Kieselgel 60GF 254 plates (thickness 0.25 mm). Visualization of TLC was performed using UV light, and the product purification was done using Merck silica gel (100-200 mesh) column chromatography. NMR spectra were recorded with a 500 MHz spectrometer (JNM-ECZ500R/S1) for 1H NMR, and 126 MHz for 13C NMR spectroscopy using DMSO-d$_6$ solutions. Chemical shifts are given in δ ppm and are measured relative to tetramethylsilane (TMS) as internal standard. Mass spectra were recorded on SCIEX X500R QTOF (TOF-MS).

II. **General procedure for the synthesis of 3-acylindoles 3:** A mixture of indole 1 (1.0 mmol), ethyl arylacetate 2 (2.0 mmol), KOtBu (1.0 equiv.), Cu(OAc)$_2$ (40 mol %) and DMSO (1mL) was stirred in a glass vessel at 110 ºC for 24 h under open atmosphere [Open atmosphere simply means the reaction without any special precautions to make it free from air]. After completion of reaction (as indicated by TLC), the mixture was quenched with aqueous NaHCO$_3$ saturated solution (5 mL), and then extracted with diethyl ether (3 × 5 mL). The combined organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and then purified by silica gel column chromatography using a mixture of EtOAc and n-hexane (1:4) to give the pure product 3.
III. Spectral data of the products 3:

(2-Methyl-1H-indol-3-yl)(phenyl)methanone (3a).\(^1\)

![3a](image)

Yellow solid (78%, 183 mg); \(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(\delta_{\text{H}} = 2.37\) (s, 3H), 6.99 (t, \(J = 7.5\) Hz, 1H), 7.10 (t, \(J = 7.5\) Hz, 1H), 7.31 (d, \(J = 8.0\) Hz, 1H), 7.37 (d, \(J = 8.0\) Hz, 1H), 7.49 (t, \(J = 7.5\) Hz, 2H), 7.57 (t, \(J = 10.0\) Hz, 3H), 11.95 (br s, 1H, NH); \(^{13}\)C NMR (126 MHz, DMSO-\(d_6\)) \(\delta_{\text{C}} = 14.1, 111.2, 112.4, 120.0, 120.9, 121.8, 127.2, 128.0, 128.3, 131.0, 134.9, 141.6, 144.4, 191.7.

(2-Chlorophenyl)(2-methyl-1H-indol-3-yl)methanone (3b).

![3b](image)

Yellow solid (67%, 180 mg); \(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(\delta_{\text{H}} = 2.26\) (s, 3H), 7.03 (t, \(J = 7.5\) Hz, 1H), 7.12 (t, \(J = 7.5\) Hz, 1H), 7.35-7.39 (m, 3H), 7.46-7.53 (m, 2H), 7.57 (d, \(J = 8.0\) Hz, 1H), 12.09 (s, 1H); \(^{13}\)C NMR (126 MHz, DMSO-\(d_6\)) \(\delta_{\text{C}} = 13.8, 111.3, 112.4, 119.8, 121.6, 122.2, 126.9, 127.6, 127.7, 128.9, 129.6, 130.5, 135.0, 141.9, 146.2, 188.5; HRMS : (M+H\(^+\)) calcd. for C\(_{16}\)H\(_{13}\)ClNO: 270.0686; found: 270.0674.

(4-Chlorophenyl)(2-methyl-1H-indol-3-yl)methanone (3c).\(^2\)

![3c](image)

Brownish yellow solid (73%, 196 mg); \(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(\delta_{\text{H}} = 2.38\) (s, 3H), 7.01 (t, \(J = 7.5\) Hz, 1H), 7.10 (t, \(J = 7.5\) Hz, 1H), 7.32 (d, \(J = 8.0\) Hz, 1H), 7.38 (d, \(J = 8.0\) Hz, 1H), 7.55 (dd, \(J = 8.0\) Hz, \(J = 32.5\) Hz, 4H), 11.97 (s, 1H); \(^{13}\)C NMR (126 MHz, DMSO-\(d_6\)) \(\delta_{\text{C}} = 14.2, 111.3, 112.2, 119.9, 121.1, 121.9, 127.1, 128.5, 130.0, 135.0, 135.8, 140.2, 144.7, 190.3.

(2-Methyl-1H-indol-3-yl)(thiophen-3-yl)methanone (3d).

![3d](image)

Reddish yellow solid (75%, 180 mg); \(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(\delta_{\text{H}} = 2.43\) (s, 3H), 7.02 (t, \(J = 7.5\) Hz, 1H), 7.10 (t, \(J = 7.5\) Hz, 1H), 7.37 (d, \(J = 6.0\) Hz, 2H), 7.47 (d, \(J = 8.0\) Hz, 1H), 7.63 (t, \(J = 3.5\) Hz, 1H), 7.99 (s, 1H), 11.87 (s, 1H); \(^{13}\)C NMR (126 MHz, DMSO-\(d_6\)) \(\delta_{\text{C}} = 14.0, 111.1, 113.4, 119.9, 120.8, 121.7, 126.6, 127.1, 127.5, 130.8, 134.9, 143.4, 144.1, 185.5; HRMS : (M+H\(^+\)) calcd. for C\(_{14}\)H\(_{12}\)NOS: 242.0640; found: 242.0631.
[1,1'-Biphenyl]-4-yl(2-methyl-1H-indol-3-yl)methanone (3e).

Reddish yellow solid (71%, 220 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_H = 1.98$ (s, 3H), 7.32-7.37 (m, 2H), 7.43-7.46 (m, 3H), 7.64 (d, $J = 7.5$ Hz, 2H), 7.70-7.74 (m, 3H), 7.85 (t, $J = 8.0$ Hz, 1H), 8.10 (s, 1H), 8.62 (d, $J = 8.5$ Hz, 1H), 11.97 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_C = 24.4$, 90.0, 117.4, 119.9, 124.7, 124.8, 125.7, 126.7, 127.3, 127.7, 128.9, 136.1, 138.3, 139.3, 140.6, 152.5, 169.8, 196.0; HRMS: (M+H)$^+$ calcd. for C$_{22}$H$_{18}$NO: 312.1388; found: 312.1378.

(1H-Indol-3-yl)(phenyl)methanone (3f).

Yellow solid (68%, 150 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_H = 7.22-7.28$ (m, 2H), 7.51-7.55 (m, 3H), 7.59-7.62 (m, 1H), 7.77 (d, $J = 7.5$ Hz, 2H), 7.92 (d, $J = 3.0$ Hz, 1H), 8.24 (d, $J = 7.5$ Hz, 1H), 12.06 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_C = 112.2$, 114.8, 121.4, 121.9, 123.1, 126.2, 128.3, 130.3, 135.9, 136.0, 136.8, 139.1, 188.7.

(4-Chlorophenyl)(1H-indol-3-yl)methanone (3g).

Yellow solid (72%, 183 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_H = 7.17-7.22$ (m, 2H), 7.46 (d, $J = 7.5$ Hz, 1H), 7.52 (d, $J = 8.5$ Hz, 2H), 7.73 (d, $J = 8.5$ Hz, 2H), 7.90 (d, $J = 3.0$ Hz, 1H), 8.17 (d, $J = 7.5$, 1H), 12.06 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_C = 112.3$, 114.8, 121.4, 122.1, 123.3, 126.2, 128.5, 130.3, 135.9, 136.0, 136.8, 139.1, 188.7.

(4-Fluorophenyl)(1H-indol-3-yl)methanone (3h).

Reddish yellow solid (56%, 133 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_H = 7.22-7.26$ (m, 2H), 7.34-7.37 (m, 2H), 7.51 (d, $J = 8.0$ Hz, 1H), 7.85-7.88 (m, 2H), 7.95 (d, $J = 3.0$ Hz, 1H), 8.22 (d, $J = 7.5$ Hz, 1H), 12.09 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_C = 112.7$, 115.3, 115.7, 115.9, 121.9, 122.4, 123.7, 126.7, 131.5, 131.6, 136.3, 137.2, 137.5, 189.0; 19F (470 MHz, DMSO-d$_6$) $\delta_F = -109.31$.

(2-Chlorophenyl)(1H-indol-3-yl)methanone (3i).

Reddish brown solid (55%, 140 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_H = 7.23-7.28$ (m, 2H), 7.45-7.58 (m, 5H), 7.64 (s, 1H), 8.14 (d, $J = 7.0$ Hz, 1H), 12.12 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_C = 112.5$, 116.0, 121.1, 122.2, 123.3, 125.3, 127.0, 128.6, 129.6, 129.7, 130.6, 136.9, 137.0, 140.2, 188.2.
(4-Bromophenyl)(1H-indol-3-yl)methanone (3j). Reddish yellow solid (68%, 202 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_{H} = 7.22-7.28$ (m, 2H), 7.51 (d, $J = 7.5$ Hz, 1H), 7.73 (s, 4H), 7.96 (d, $J = 2.5$ Hz, 1H), 8.23 (d, $J = 7.5$ Hz, 1H), 12.12 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_{C} = 112.2, 114.7, 121.4, 122.0, 123.2, 124.7, 126.1, 130.4, 131.4, 136.0, 136.7, 139.4, 188.7.$

(1H-Indol-3-yl)(4-nitrophenyl)methanone (3k). Reddish yellow solid (62%, 165 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_{H} = 7.28$ (d, $J = 4.5$ Hz, 2H), 7.53 (d, $J = 6.0$ Hz, 1H), 7.99 (d, $J = 7.5$, 3H), 8.26 (d, $J = 6.5$, 1H), 8.35 (d, $J = 7.5$ Hz, 2H), 12.25 (s, 1H); 13C NMR (126 MHz DMSO-d$_6$) $\delta_{C} = 112.4, 114.8, 121.4, 122.2, 123.5, 123.6, 125.9, 136.8, 136.9, 145.9, 148.6, 188.1.$

(1H-Indol-3-yl)(4-methoxyphenyl)methanone (3l). Reddish yellow solid (65%, 163 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_{H} = 3.85$ (s, 3H), 7.06 (d, $J = 8.5$ Hz, 2H), 7.20-7.26 (m, 2H), 7.51 (d, $J = 7.5$ Hz, 1H), 7.80 (d, $J = 8.5$ Hz, 2H), 7.94 (d, $J = 2.5$ Hz, 1H), 8.22 (d, $J = 7.5$ Hz, 1H), 12.01 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_{C} = 55.3, 112.1, 113.6, 115.0, 121.4, 121.6, 122.9, 126.4, 130.5, 132.9, 134.8, 136.6, 161.7, 188.7.$

(1H-Indol-3-yl)(p-tolyl)methanone (3m). Reddish yellow solid (66%, 146 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_{H} = 2.40$ (s, 3H), 7.20-7.26 (m, 2H), 7.51 (d, $J = 7.5$ Hz, 1H), 7.69 (d, $J = 7.5$ Hz, 2H), 7.92 (d, $J = 2.5$, 1H), 8.22 (d, $J = 7.5$ Hz, 1H), 12.03 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_{C} = 21.0, 112.2, 115.0, 121.4, 121.8, 123.0, 126.3, 128.5, 128.9, 135.4, 136.6, 137.8, 141.0, 190.4.$

(1H-Indol-3-yl)(o-tolyl)methanone (3n). Reddish yellow solid (63%, 148 mg); 1H NMR (500 MHz, DMSO-d$_6$) $\delta_{H} = 2.27$ (s, 3H), 7.21-7.27 (m, 4H), 7.37-7.41 (m, 2H), 7.50 (d, $J = 8.0$ Hz, 1H), 7.59 (d, $J = 3.0$, 1H), 8.18 (d, $J = 7.5$ Hz, 1H), 12.01 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) $\delta_{C} = 19.1, 112.3, 116.5, 121.2, 122.0, 123.1, 125.2, 125.6, 127.1, 129.1, 130.5, 134.7, 136.2, 136.9, 141.0, 192.1.$
(1H-Indol-3-yl)(naphthalen-1-yl)methanone (3o).\(^5\)

![Image](image1.png)

Reddish yellow solid (67%, 181 mg); \(^1\text{H NMR (500 MHz, DMSO-\(d_6\))} \delta_{\text{H}} = 7.27 (t, J = 3.5 Hz, 2H), 7.49-7.57 (m, 3H), 7.60 (t, J = 7.0 Hz, 1H), 7.67-7.70 (m, 2H), 8.0 (t, J = 8.0 Hz, 2H), 8.07 (d, J = 8.5 Hz, 1H)), 8.29 (d, J = 6.0 Hz, 1H), 12.06 (s, 1H); \(^{13}\text{C NMR (126 MHz, DMSO-\(d_6\))} \delta_{\text{C}} = 112.4, 117.1, 121.4, 122.2, 123.3, 124.9, 125.3, 125.7, 125.8, 126.2, 126.7, 128.3, 129.6, 130.1, 133.3, 136.7, 137.0, 138.6, 191.3.

[1,1'-Biphenyl]-4-yl(1H-indol-3-yl)methanone (3p).\(^6\)

![Image](image2.png)

Reddish yellow solid (52%, 154 mg); \(^1\text{H NMR (500 MHz, DMSO-\(d_6\))} \delta_{\text{H}} = 7.23-7.29 (m, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.50-7.54 (m, 3H), 7.54 (d, J = 8.5 Hz, 2H), 7.88 (d, J = 8.0 Hz, 2H), 8.01 (d, J = 3.5 Hz, 1H), 8.27 (d, J = 7.5 Hz, 1H), 12.01 (s, 1H); \(^{13}\text{C NMR (126 MHz, DMSO-\(d_6\))} \delta_{\text{C}} = 112.7, 115.5, 120.0, 122.4, 123.6, 126.8, 127.1, 127.4, 128.5, 129.4, 129.6, 129.7, 130.1, 133.3, 136.2, 136.7, 137.0, 138.6, 189.9.

(5-Methoxy-1H-indol-3-yl)(phenyl)methanone (3q).\(^1\)

![Image](image3.png)

Light yellow solid (46%, 115 mg); \(^1\text{H NMR (500 MHZ, DMSO-\(d_6\))} \delta_{\text{H}} = 3.80 (s, 3H), 6.88-6.90 (m, 1H), 7.40 (d, J = 9.0 MHz, 1H), 7.52 (t, J = 8.0 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.76 (q, J = 7.0 Hz, 3H), 7.86 (d, J = 2.0 Hz, 1H), 11.98 (s, 1H); \(^{13}\text{C NMR (126 MHz, DMSO-\(d_6\))} \delta_{\text{C}} = 55.2, 103.1, 112.9, 113.0, 114.8, 127.0, 128.2, 128.3, 130.9, 131.5, 135.9, 140.6, 155.5, 189.9.

(4-Bromophenyl)(5-methoxy-1H-indol-3-yl)methanone (3r).\(^1\)

![Image](image4.png)

Yellow solid (72%, 237 mg); \(^1\text{H NMR (500 MHz, DMSO-\(d_6\))} \delta_{\text{H}} = 3.80 (s, 3H), 6.89-6.91 (m, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.70-7.77 (m, 5H), 7.90 (d, J = 3.5 Hz, 1H), 12.01 (s, 1H); \(^{13}\text{C NMR (126 MHz, DMSO-\(d_6\))} \delta_{\text{C}} = 55.3, 103.1, 112.9, 113.1, 114.6, 124.6, 126.9, 130.3, 131.4, 131.5, 136.1, 139.6, 155.6, 188.6.
(4-Chlorophenyl)(5-methoxy-1H-indol-3-yl)methanone (3s).\(^1\)

Yellow solid (68%, 194 mg); \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta_H = 3.80\) (s, 3H), 6.89 (d, \(J = 7.5\) Hz, 1H), 7.40 (d, \(J = 9.0\) Hz, 1H), 7.58 (d, \(J = 8.0\) Hz, 2H), 7.77-7.79 (m, 3H), 7.90 (d, \(J = 2.5\) Hz, 1H), 12.02 (s, 1H); \(^13\)C NMR (126 MHz, DMSO-d\(_6\)) \(\delta_C = 55.3, 103.2, 113.0, 113.1, 114.6, 127.0, 128.5, 130.2, 131.5, 135.7, 136.1, 139.2, 155.6, 188.6\).

(5-Methoxy-1H-indol-3-yl)(naphthalen-1-yl)methanone (3t).

Reddish brown solid (66%, 198 mg); \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta_H = 3.85\) (s, 3H), 6.91 (d, \(J = 9.0\) Hz, 1H), 7.41 (d, \(J = 8.5\) Hz, 1H), 7.50-7.62 (m, 4H), 7.66 (d, \(J = 7.0\) Hz, 1H), 7.82 (s, 1H), 7.99 (t, \(J = 9.5\) Hz, 2H), 8.06 (d, \(J = 8.0\) Hz, 1H), 11.94 (s, 1H); \(^13\)C NMR (126 MHz, DMSO-d\(_6\)) \(\delta_C = 55.2, 103.2, 113.0, 113.1, 124.9, 125.3, 125.5, 126.2, 126.6, 126.7, 128.2, 129.5, 130.0, 132.0, 133.6, 136.7, 138.4, 155.9, 191.4; HRMS: (M+H)\(^+\) calcd. for C\(_{20}\)H\(_{16}\)NO\(_2\): 302.1181; found: 302.1172.

3-Benzoyl-1H-indole-5-carbonitrile (3u).\(^3\)

Greenish yellow (81%, 199 mg); \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta_H = 7.56\) (d, \(J = 6.0\) Hz, 2H), 7.63 (d, \(J = 6.5\) Hz, 2H), 7.69 (d, \(J = 7.5\) Hz, 1H), 7.82 (d, \(J = 6.0\) Hz, 2H), 8.18 (s, 1H), 8.61 (s, 1H), 12.54 (s, 1H); \(^13\)C NMR (126 MHz, DMSO-d\(_6\)) \(\delta_C = 104.1, 113.7, 115.0, 120.1, 126.0, 126.5, 128.4, 128.5, 131.5, 137.8, 138.5, 139.6, 141.5, 189.8.

3-(4-Chlorobenzoyl)-1H-indole-5-carbonitrile (3v).

Yellow solid (66%, 185 mg); \(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta_H = 7.60\) (d, \(J = 8.0\) Hz, 2H), 7.63 (d, \(J = 8.5\) Hz, 1H), 7.70 (d, \(J = 8.5\) Hz, 1H), 7.83 (d, \(J = 8.0\) Hz, 2H), 8.20 (s, 1H), 8.60 (s, 1H), 12.58 (s, 1H); \(^13\)C NMR (126 MHz, DMSO-d\(_6\)) \(\delta_C = 104.3, 113.8, 114.9, 120.1, 126.0, 126.2, 126.5, 128.6, 130.4, 136.4, 138.0, 138.3, 138.6, 188.6; HRMS: (M+H)\(^+\) calcd. for C\(_{16}\)H\(_{10}\)\(^{35}\)ClN\(_2\)O: 281.0482; found: 281.0472.
3-(4-Methylbenzoyl)-1H-indole-5-carbonitrile (3w).

Light yellow solid (75%, 195 mg); H NMR (500 MHz, DMSO-d$_6$) δH = 2.37 (s, 3H), 7.31 (d, J =8.0 Hz, 2H), 7.58 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 7.5, 2H), 8.14 (s, 1H), 8.56 (s, 1H), 12.47 (s, 1H); C NMR (126 MHz, DMSO-d$_6$) δC = 21.0, 104.0, 113.7, 115.1, 120.1, 125.9, 126.1, 126.5, 128.6, 129.0, 136.9, 137.4, 138.5, 141.7, 189.4; HRMS: (M+H)$^+$ calcd. for C$_{17}$H$_{13}$N$_2$O: 261.1028; found: 261.1015.

(5-Bromo-1H-indol-3-yl)(phenyl)methanone (3x).

Yellow solid (71%, 211 mg); H NMR (500 MHz, DMSO-d$_6$) δH = 7.39 (d, J = 8.5 Hz, 1H), 7.49 (d, J = 9.0 Hz, 1H), 7.53 (t, J = 7.5 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.78 (d, J = 7.0 Hz, 2H), 8.01 (d, J = 2.0 Hz, 1H), 8.39 (s, 1H), 12.25 (s, 1H); C NMR (126 MHz, DMSO-d$_6$) δC = 114.3, 114.4, 114.7, 123.6, 125.7, 128.0, 128.4, 128.5, 131.3, 135.4, 136.8, 140.0, 189.8.

(5-Bromo-1H-indol-3-yl)(3-nitrophenyl)methanone (3y).

Yellow solid (58%, 200 mg); H NMR (500 MHz, DMSO-d$_6$) δH = 7.42 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 8.5 Hz, 1H), 7.82 (t, J = 7.5 Hz, 1H), 8.16 (d, J = 2.5 Hz, 1H), 8.22 (d, J = 7.5 Hz, 1H), 8.41-8.48 (m, 3H), 12.41 (s, 1H); C NMR (126 MHz, DMSO-d$_6$) δC = 114.0, 114.5, 115.0, 123.0, 123.5, 125.7, 126.1, 127.8, 130.3, 134.6, 135.6, 137.7, 141.1, 147.7, 187.3; HRMS: (M-H)$^-$ calcd. for C$_{15}$H$_8$BrN$_2$O$_3$: 342.9718; found: 342.9721.

Phenyl(1H-pyrrolo[2,3-b]pyridin-3-yl)methanone (3z).

Yellow solid (71%, 157 mg); H NMR (500 MHz, DMSO-d$_6$) δH = 7.26 (s, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 6.5 Hz, 1H), 7.77 (d, J = 7.5 Hz, 2H), 8.04 (s, 1H), 8.49 (d, J = 7.5 Hz, 1H), 12.60 (s, 1H); C NMR (126 MHz, DMSO-d$_6$) δC = 113.6, 118.2, 118.7, 128.2, 128.5, 129.8, 131.4, 135.8, 139.6, 144.5, 149.0, 189.2.
(4-Methoxyphenyl)(1H-pyrrolo[2,3-b]pyridin-3-yl)methanone (3za).

Yellow solid (62%, 156 mg); 1H NMR (500 MHz, DMSO-d$_6$) δ$_H$ = 3.83 (s, 3H), 7.05 (d, J = 9.0 Hz, 2H), 7.25 (q, J = 4.5 Hz, 1H), 7.80 (d, J = 9.0 Hz, 2H), 8.06 (s, 1H), 8.34 (d, J = 3.0 Hz, 1H), 8.47 (m, 1H), 12.56 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) δ$_C$ = 55.4, 113.7, 113.8, 118.0, 129.9, 130.8, 132.0, 134.9, 141.3, 144.3, 148.8, 162.0, 188.5; HRMS: (M+H)$^+$ calcd. for C$_{15}$H$_{13}$N$_2$O$_2$: 253.0977; found: 253.0946.

(4-Chlorophenyl)(1H-pyrrolo[2,3-b]pyridin-3-yl)methanone (3zb).

Yellow solid (73%, 187 mg); 1H NMR (500 MHz, DMSO-d$_6$) δ$_H$ = 7.29 (q, J = 4.5 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 8.13 (s, 1H), 8.39 (s, 1H), 8.52 (d, J = 7.5 Hz, 1H), 12.71 (s, 1H); 13C NMR (126 MHz, DMSO-d$_6$) δ$_C$ = 113.4, 118.3, 118.7, 128.6, 129.8, 130.4, 136.1, 136.2, 138.2, 144.5, 149.0, 188.6; HRMS: (M+H)$^+$ calcd. for C$_{14}$H$_{10}$ClN$_2$O: 257.0482; Found: 257.0447.

IV. References:
