Cascade and multicomponent synthesis of structurally diverse 2-(pyrazol-3-yl)pyridines and polysubstituted pyrazoles

Raquel Barroso, María-Paz Cabal, Azucena Jiménez,* and Carlos Valdés*a

aDepartamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles”. Universidad de Oviedo. c/ Julián Clavería 8. Oviedo 33006. Spain. azujp@hotmail.com; acvg@uniovi.es

Contents
1. General considerations.
2. Experimental procedures for the synthesis of compounds 3, 4, 5, and 8.
 2.1. Method 1: General procedure for the synthesis of 2-(pyrazol-3-yl)pyridines 3, 4 and 8 from N-tosylhydrazones 1 and 2-ethynylpyridines 2.
 2.2. Method 2: General procedure for the three-components synthesis of 2-(pyrazol-3-yl)pyridines 3 and trisubstituted pyrazoles 8.
 2.3. Method 3: General procedure for the one-pot/multicomponents synthesis of 2-(pyrazol-3-yl)pyridines from α-bromoketones.
3. Characterization data of compounds 3, 5 and 8.
4. Synthesis of polyheterocycle 10 by click reaction starting from 3s.
5. Copies of the 1H and 13C NMR spectra.
1. General considerations

The reactions were carried out in a RR98030 12 place Carousel Reaction Station™ from Radleys Discovery Technologies, equipped with gas tight threaded caps with a valve, cooling reflux head system, and digital temperature controller, unless otherwise indicated. K₂CO₃ was purchased from Acros, stored in a flask purged with nitrogen and weighted in the air. CH₃CN was dried using the procedures described in D. Perrin, *Purification of Laboratory Chemicals*, Pergamon Press Ltd. 1980, 2nd Ed. NMR spectra were recorded in CDCl₃ at 400 or 300 MHz for ¹H and 75 MHz for ¹³C, with tetramethylsilane as internal standard for ¹H and the residual solvent signals as standard for ¹³C. The data is being reported as s = singlet, bs = broad singlet, d = doublet, dd = double doublet, t = triplet, dt = double triplet, q = quadruplet and m = multiplet or unresolved, chemical shifts in ppm and coupling constant(s) in Hz. HRMS were measured in EI mode, and the mass analyser of the HRMS was TOF. N-Tosylhydrazones were prepared from the corresponding carbonyl compounds and N-tosylhydrazide through previously described methodologies.¹

2. Experimental procedures for the synthesis of compounds 3, 4, 5, and 8.

2.1. Method 1: General procedure for the synthesis of 2-(pyrazol-3-yl)pyridines 3 from N-tosylhydrazones 1 and 2-ethynlypyridines 2.

\[\text{N-NHHTs} \ + \ \text{H-CH₂CN} \xrightarrow{K₂CO₃, 110 °C} \text{N-NHHTs} \]

2.1.1. Standard procedure
In a carousel tube reactor the corresponding N-tosylhydrazone 1 (0.24 mmol), 2-ethynlypyridine (0.2 mmol) and K₂CO₃ (0.4 mmol, 55 mg) were dissolved in 2 ml of

CH$_3$CN and the mixture was stirred at 110 ºC for 16 h under nitrogen atmosphere. Then, the reaction was allowed to reach room temperature and was treated with 10 mL of CH$_2$Cl$_2$ and 10 mL of NaHCO$_3$ saturated aqueous solution. The layers were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (2x5 mL). The organic layers were combined, washed with brine (5 mL), dried over Na$_2$SO$_4$, filtered, and the solvent was removed under reduced pressure. The resulting oily residue was purified by flash chromatography in silica gel to afford the 2-(pyrazol-3-yl)pyridine.

2.1.2 Procedure with slow addition of the N-tosylhydrazone:
In a carousel tube reactor the 2-ethynlypyridine 2 (0.2 mmol) and K$_2$CO$_3$ (0.4 mmol, 55 mg) were mixed in 1 ml of CH$_3$CN under nitrogen atmosphere and the solution was heated to 100 ºC. Then, a solution of the N-tosylhydrazone 1 (0.3 mmol) in 1 ml of CH$_3$CN was slowly added with a syringe pump over a period of 2h. The mixture was stirred for 16 h at 100 ºC. Then, the reaction was allowed to reach room temperature and was treated with 10 mL of CH$_2$Cl$_2$ and 10 mL of NaHCO$_3$ saturated aqueous solution. Then, the workup of the reaction is identical to that described above.

2.1.3 Synthesis of 3j through a one pot procedure from the ketone and tosylhydrazide
In a carousel tube reactor the corresponding α-substituted ketone (0.2 mmol), N-tosylhydrazide (0.22 mmol) and CH$_3$CN (1.5 ml) were added. After 6 h at 60 ºC, 2-ethynlypyridine (0.4 mmol, 42 μl), K$_2$CO$_3$ (0.4 mmol, 55 mg) and 1.5 ml of CH$_3$CN were added to the mixture. The reaction was stirred at 110 ºC for 16 h under nitrogen atmosphere. Then, the reaction was allowed to reach room temperature and was treated with 10 mL of CH$_2$Cl$_2$ and 10 mL of NaHCO$_3$ saturated aqueous solution. Then, the workup of the reaction is identical to that described above.

2.1.4 Procedure for the synthesis of NH-free 2-(pyrazol-3-yl)pyridines 4.
The procedure is identical to that described above for 2-(pyrazol-3-yl)pyridines 3, employing in this case N-tosylhydrazone 1h.

2.1.5. General procedure for the synthesis of 2,6-bis(pyrazolyl)pyridines 5 by reaction of N-tosylhydrazones 1 with 2,6-diethynlypyridine
The procedure is identical to that described above for 2-(pyrazol-3-yl)pyridines 3 but employing 0.2 mmol of 2,6-diethynlypyridine 2e, 0.8 mmol of N-tosylhydrazone and 0.8 mmol (110 mg) of K$_2$CO$_3$.
2.2. Method 2: General procedure for the three-components synthesis of 2-(pyrazol-3-yl)pyridines 3 and trisubstituted pyrazoles 8

In a carousel tube reactor the α-bromo-N-tosylhydrazone 6 (0.2 mmol), 2-ethynlypyridine 2 (0.2 mmol), the corresponding NH-azole (0.1 mmol) and K$_2$CO$_3$ (0.5 mmol, 76 mg) were dissolved in 3 ml of CH$_3$CN and the mixture was stirred at 110 ºC for 16 h under nitrogen atmosphere. Then, the reaction was allowed to reach room temperature and was treated with 10 mL of CH$_2$Cl$_2$ and 10 mL of NaHCO$_3$ saturated aqueous solution. Then, the workup of the reaction is identical to that described for Method 1.

2.3. Method 3: General procedure for the one-pot/multi-components synthesis of 2-(pyrazol-3-yl)pyridines from α-bromoketones.

In carousel tube reactor, the corresponding α-bromoketone 9 (0.2 mmol) and N-tosylhydrazide (0.22 mmol) were mixed with 1.5 mL of CH$_3$CN, and the mixture was stirred at 60 ºC for 6 h. Then, the 2-ethynlypyridine (0.2 mmol), the corresponding heterocycle (0.1 mmol), K$_2$CO$_3$ (0.5 mmol, 70 mg) and 2.5 ml of CH$_3$CN were added to the mixture. The reaction was stirred at 110 ºC for 16 h under nitrogen atmosphere. Then, the reaction was allowed to reach room temperature and was treated with 10 mL of CH$_2$Cl$_2$ and 10 mL of NaHCO$_3$ saturated aqueous solution. Then, the workup of the reaction is identical to that described for method 1.
3. Characterization data of compounds 3, 4, 5, and 8

2-(1-Benzyl-5-phenyl-1H-pyrazol-3-yl)pyridine (3a)

Following Method 1 (standard procedure), from 2-ethynylpyridine (0.1 mmol, 10 μl) and N'-(1,2-diphenylethyldiene)-4-methylbenzenesulfonohydrazide (0.12 mmol, 43.7 mg), were obtained 13.5 mg of 3a (44 % isolated yield) as a yellowish oil. Rf = 0.59 (Hexane/EtOAc, 2:1).

\[^1\text{H}\text{NMR (300 MHz, CDCl}_3\text{)} \delta (\text{ppm}) = 8.67 (\text{ddd, } J = 4.9, 1.8, 0.9 \text{ Hz, } 1\text{H, CH}), 8.04 (\text{dt, } J = 8.0, 1.0 \text{ Hz, } 1\text{H, CH}), 7.65 (\text{td, } J = 7.6, 1.8 \text{ Hz, } 1\text{H, CH}), 7.41 (\text{m, } 5\text{H, CH}), 7.31 (\text{m, } 2\text{H, CH}), 7.23 (\text{m, } 2\text{H, CH}), 7.13 (\text{m, } 2\text{H, CH}), 7.03 (\text{s, } 1\text{H, CH}), 5.46 (\text{s, } 2\text{H, CH}_2).\]

\[^{13}\text{C NMR (75 MHz, CDCl}_3\text{)} \delta (\text{ppm}) = 152.3 (\text{C}), 151.2 (\text{C}), 149.4 (\text{CH}), 145.7 (\text{C}), 137.5 (\text{C}), 136.5 (\text{CH}), 130.5 (\text{C}), 128.9 (\text{CH}), 128.7 (2\text{CH}), 128.6 (2\text{CH}), 128.5 (\text{CH}), 127.8 (\text{CH}), 127.5 (\text{CH}), 126.7 (2\text{CH}), 122.4 (\text{CH}), 120.2 (\text{CH}), 105.1 (\text{CH}), 53.5 (\text{CH}_2).\]

EI HRMS: calcd. For C\text{21}H\text{18}N\text{3}[M+1]^+ : 312.1497, found: 312.1495

2-(1-benzyl-5-phenyl-1H-pyrazol-3-yl)-6-bromopyridine (3b)

Following Method 1 (slow addition), from 2-bromo-6-ethynlypyridine (0.3 mmol, 89 mg) and N'-(1,2-diphenylethyldiene)-4-methylbenzenesulfonohydrazide (0.36 mmol, 0.13 g), were obtained 17.2 mg of 3b (49 % isolated yield) as a colorless oil. Rf = 0.47 (Hexane/EtOAc, 2:1).

\[^1\text{H NMR (300 MHz, CDCl}_3\text{)} \delta (\text{ppm}) = 8.02 (\text{dd, } J = 7.7, 0.9 \text{ Hz, } 1\text{H, CH}), 7.59 (\text{t, } J = 7.8 \text{ Hz, } 1\text{H, CH}), 7.48 – 7.35 (\text{m, } 6\text{H, CH}), 7.30 (\text{d, } J = 5.4 \text{ Hz, } 3\text{H, CH}), 7.08 (\text{dd, } J = 8.1, 2.0 \text{ Hz, } 2\text{H, CH}), 7.05 (\text{s, } 1\text{H, CH}), 5.43 (\text{s, } 2\text{H, CH}_2).\]
13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 153.6 (C), 150.0 (C), 145.8 (C), 141.7 (C), 138.8 (CH), 137.3 (C), 130.3 (C), 128.8 (2CH), 128.8 (CH), 128.7 (2CH), 128.6 (2CH), 127.5 (CH), 126.7 (CH), 126.5 (CH), 118.7 (CH), 105.8 (CH), 53.5 (CH$_2$).

EI HRMS: calcd. for C$_{21}$H$_{17}$BrN$_3$ [M+1]$^+$: 390.0597; found 390.0600.

2-(1-(Methoxymethyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (3c)

Following **Method 1** (slow addition), from 2-ethynylpyridine (0.1 mmol, 10μl) and N'-[(2-methoxy-1-phenylethylidene)-4-methylbenzenesulfonyl]hydrazide (0.12 mmol, 38.2 mg), were obtained 11.7 mg of 3c (44% isolated yield) as a yellowish oil. Rf = 0.58 (Hexane/EtOAc, 2:1).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.68 (d, $J = 4.0$, 1H, CH), 8.05 (d, $J = 7.9$ Hz, 1H, CH), 7.77 (td, $J = 7.8$, 1.7 Hz, 1H, CH), 7.67 (dd, $J = 8.0$, 1.5 Hz, 2H, CH), 7.49 (m, 3H, CH), 7.26 (m, 1H, CH), 7.09 (s, 1H, CH), 5.48 (s, 2H, CH$_2$), 3.55 (s, 3H, OCH$_3$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 151.9 (C), 151.1 (C), 149.2 (CH), 146.3 (C), 136.8 (CH), 130.0 (CH), 128.9 (2CH), 128.8 (CH), 127.9 (CH), 122.7 (CH), 120.4 (CH), 105.6 (CH), 79.9 (CH$_2$), 56.8 (OCH$_3$).

EI HRMS: calcd. for C$_{16}$H$_{16}$N$_3$O [M+1]$^+$: 266.1287; found 266.1288.

8-Methoxy-2-(pyridin-2-yl)-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepine (3d)

Following **Method 1** (slow addition), from 2-ethynlypyridine (0.1 mmol, 10μl) and N'-(2-methoxycyclohexylidene)-4-methylbenzenesulfonylhydrazide (0.12 mmol, 35.6 mg), were obtained 17.5 mg of 3d (72% isolated yield) as a colorless oil. Rf = 0.23 (Hexane/EtOAc, 3:1).
1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.65 (bs, 1H, CH), 7.91 (d, $J = 7.9$ Hz, 1H, CH), 7.73 (td, $J = 7.8$, 1.6 Hz, 1H, CH), 7.22 (d, $J = 5.6$ Hz, 1H, CH), 6.68 (s, 1H, CH), 5.61 (d, $J = 3.8$ Hz, 1H, CH), 3.26 (s, 3H, OCH$_3$), 2.97 (dd, $J = 15.0$, 5.4 Hz, 1H, CH), 2.79 (t, $J = 13.4$ Hz, 1H, CH), 2.32 (m, 1H, CH$_2$), 2.23 (m, 2H, CH$_2$), 1.83 (m, 2H, CH$_2$), 1.46 (t, $J = 13.1$ Hz, 1H, CH$_2$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 152.3 (C), 149.2 (CH), 145.7 (C), 136.7 (CH), 122.2 (CH), 120.1 (CH), 105.2 (CH), 92.0 (CH), 55.7 (CH$_3$), 32.5 (CH$_2$), 27.4 (CH$_2$), 25.8 (CH$_2$), 23.1 (CH$_2$).

EI HRMS: calcd. for C$_{14}$H$_{18}$N$_3$O [M+1]$^+$: 244.1449; found 244.1444.

(R)-8-Methoxy-2-(6-methylpyridin-2-yl)-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepine (3e)

Following Method 1 (slow addition), from 2-ethynyl-6-methylpyridine (0.16 mmol, 22.3 mg) and N^\prime-(2-methoxycyclohexylidene)-4-methylbenzenesulfonohydrazide (0.19 mmol, 56.3 mg), were obtained 21.4 mg of 3e (52% isolated yield) as a colorless oil. Rf = 0.37 (Hexane/EtOAc, 1:1).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.65 (d, $J = 7.7$ Hz, 1H, CH), 7.60 (t, $J = 7.7$ Hz, 1H, CH), 7.05 (d, $J = 7.4$ Hz, 1H, CH), 6.66 (s, 1H, CH), 5.60 (d, $J = 3.6$ Hz, 1H, CH), 3.24 (s, 3H, OCH$_3$), 2.96 (dd, $J = 14.7$, 5.6 Hz, 1H, CH$_2$), 2.78 (t, $J = 13.1$ Hz, 1H, CH$_2$), 2.62 (s, 3H, CH$_3$), 2.29 (m, 1H, CH$_2$), 2.10 (m, 2H, CH$_2$), 1.73 (m, 2H, CH$_2$), 1.43 (q, $J = 13.0$ Hz, 1H, CH$_2$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 158.2 (C), 151.9 (C), 149.9 (C), 145.5 (C), 136.7 (CH), 121.8 (CH), 117.2 (CH), 105.3 (CH), 91.8 (CH), 55.6 (CH$_3$), 32.5 (CH$_2$), 27.4 (CH$_2$), 25.8 (CH$_2$), 24.7 (CH$_3$), 23.1 (CH$_2$).

EI HRMS: calcd. for C$_{15}$H$_{20}$N$_3$O [M+1]$^+$: 258.1601; found 258.1601.
(R)-2-(6-Bromopyridin-2-yl)-8-methoxy-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepine (3f)

Following **Method 1** (slow addition), from 2-bromo-6-ethynylpyridine (0.3 mmol, 89 mg) and N’-(2-methoxycyclohexylidene)-4-methylbenzenesulfonohydrazide (0.19 mmol, 56.3 mg), were obtained 53 mg of 3f (55% isolated yield) as a yellow oil. Rf = 0.5 (Hexane/EtOAc, 2:1).

1H NMR (300 MHz, CDCl₃) δ (ppm) = 1H NMR (300 MHz, CDCl₃) δ (ppm) = 7.90 (dd, J = 7.7, 0.9 Hz, 1H, CH), 7.56 (t, J = 7.8 Hz, 1H, CH), 7.38 (dd, J = 7.8, 0.9 Hz, 1H, CH), 6.71 (s, 1H, CH), 5.57 (d, J = 3.3 Hz, 1H, CH), 3.24 (s, 3H, OCH₃), 2.93 (m, 1H, CH), 2.77 (t, J = 12.8 Hz, 1H, CH₂), 2.45 (m, 2H, CH₂), 2.13 (d, J = 13.8 Hz, 1H, CH₂), 2.03 (d, J = 14.3 Hz, 1H, CH₂), 1.83 (dd, J = 8.5, 6.8 Hz, 1H, CH₂).

13C NMR (75 MHz, CDCl₃) δ (ppm) = 153.8 (C), 148.4 (C), 145.8 (C), 141.7 (C), 138.7 (CH), 126.3 (CH), 118.5 (CH), 105.8 (CH), 92.0 (CH), 55.7 (OCH₃), 32.5 (CH₂), 27.3 (CH₂), 25.8 (CH₂), 23.1 (CH₂).

2-[1-[(3,5-Dimethyl-1H-pyrazol-1-yl)methyl]-5-phenyl-1H-pyrazol-3-yl]pyridine (3g)

Following **Method 1**, from 2-ethynlypyridine (0.17 mmol, 17 µl) and (E)-N’-(2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.20 mmol, 75 mg) were obtained 25.8 mg of 3g (47 % isolated yield). Additionally, when product 3g was obtained employing 1 mmol of the corresponding tosylhydrazone and following the general method 1, the isolated yield was increased to 61 %.
Following **Method 2** (slow addition), from 2-ethynylpyridine (0.17 mmol, 17 µl) and (E)-N′-(2-bromo-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.16 mmol, 60 mg), were obtained 22.2 mg of **3g** (82% isolated yield).

Following **Method 3** from 2-ethynylpyridine (0.16 mmol, 16.6 µl), 2-bromo-1-phenylethan-1-one (0.16 mmol, 33.3 mg), 3,5-dimethyl-1H-pyrazole (0.082 mmol, 8 mg) and 4-methylbenzenesulfonohydrazide (0.18 mmol, 33.6 mg) were obtained 11.3 mg of **3g** (42% isolated yield).

Compound 3g is obtained as a white solid. m.p. = 123 – 124 °C. Rf = 0.19 (Hexane/EtOAc, 2:1).

\[\text{EI HRMS: calcd. for } C_{20}H_{20}N_{5}[M+1]^+ : 330.1712, \text{ found: } 330.1713. \]

2-(1-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-6-methoxypyridine (**3h**)

Following **Method 1** (slow addition), from 2-ethynyl-6-methoxypyridine (0.09 mmol, 14.2 mg) and (E)-N′-(2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.11 mmol, 42.4 mg), were obtained 17.1 mg of **3h** (53% isolated yield) as a colorless oil. Rf = 0.52 (Hexane/EtOAc, 2:1).
1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.82 (d, J = 7.4 Hz, 2H, CH), 7.57-7.51 (m, 5H, CH), 6.97 (s, 1H, CH), 6.67 (dd, J = 6.4, 2.0 Hz, 1H, CH), 6.18 (s, 2H, CH$_2$), 5.83 (s, 1H, CH), 4.01 (s, 3H, OCH$_3$), 2.50 (s, 3H, CH$_3$), 2.19 (s, 3H, CH$_3$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 163.7 (C), 152.0 (C), 149.5 (C), 148.7 (C), 145.8 (C), 141.0 (C), 139.0 (CH), 129.8 (C), 129.7 (2CH), 128.8 (CH), 128.7 (2CH), 112.5 (CH), 109.5 (CH), 106.3 (CH), 105.6 (CH), 60.2 (CH$_2$), 53.2 (OCH$_3$), 13.6 (CH$_3$), 11.3 (CH$_3$).

EI HRMS: calcd. for C$_{21}$H$_{22}$N$_5$O [M+1]$^+$: 360.1818, found : 360.1819.

1-[(5-Phenyl-3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl]-1H-indole (3i)

Following Method 1 (slow addition), from 2-ethynlypyridine (0.05 mmol, 5.5µl) and (E)-N'-(2-(1H-indol-1-yl)-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.19 mmol, 75 mg), were obtained 19.3 mg of 3i (47% isolated yield) as a yellow oil. Rf = 0.36 (Hexane/EtOAc, 2:1).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.64 (d, J = 4.3 Hz, 1H, CH), 8.06 (d, J = 7.9 Hz, 1H, CH), 7.77 (td, J = 7.8, 1.8 Hz, 1H, CH), 7.51 (m, 4H, CH), 7.38 (m, 2H, CH), 7.20 (m, 2H, CH), 7.10 (m, 2H, CH), 6.95 (s, 1H, CH), 6.94 (d, J = 3.3 Hz, 1H, CH), 6.42 (d, J = 0.6 Hz, 1H, CH), 6.39 (s, 2H, CH$_2$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 152.0 (C), 151.7 (C), 149.2 (C), 145.5 (C), 136.8 (CH), 135.6 (CH), 130.2 (C), 129.6 (CH), 129.4 (2CH), 129.3 (2CH), 129.0 (C), 127.4 (CH), 122.7 (CH), 122.0 (CH), 120.8 (CH), 120.3 (CH), 120.1 (CH), 110.0 (CH), 106.2 (CH), 103.0 (CH), 59.1 (CH$_2$).

EI HRMS: calcd. for C$_{23}$H$_{19}$N$_4$ [M+1]$^+$: 351.1603, found : 351.1604.
2-(1-((4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (3j)

Modified procedure of **Method 1**: In a carousel tube reactor, the ketone (0.2 mmol) and N-tosylhydrazide (0.22 mmol) were mixed with 1.5 mL of CH\textsubscript{3}CN, and the mixture was stirred at 60 °C for 6 h. Then, the 2-ethynylpyridine (0.2 mmol), K\textsubscript{2}CO\textsubscript{3} (0.5 mmol, 70 mg) and 2.5 ml of CH\textsubscript{3}CN were added to the mixture. The reaction was stirred at 110 °C for 16 h under nitrogen atmosphere. Then, the reaction was allowed to reach room temperature and was treated with 10 mL of CH\textsubscript{2}Cl\textsubscript{2} and 10 mL of NaHCO\textsubscript{3} saturated aqueous solution. Then, the workup of the reaction is identical to that described for method 1 to obtain 11.9 mg of 3j (30% isolated yield) as a white solid. m.p. = 145 – 147 °C. Rf = 0.29 (Hexane/EtOAc, 1:1).

1H NMR (300 MHz, CDCl\textsubscript{3}) δ (ppm) = 8.70 (d, $J = 5.1$ Hz, 1H, CH), 8.22 (s, 1H, CH), 7.79 (d, $J = 1.7$ Hz, 1H, CH), 7.79 (dt, $J = 7.6$, 1.7 Hz, 1H, CH), 7.57 (m, 7H, CH), 7.40 (m, 1H, CH), 7.30 (m, 1H, CH), 7.06 (m, 1H, CH), 7.02 (s, 1H, CH), 6.64 (s, 2H, CH\textsubscript{2}).

13C NMR (75 MHz, CDCl\textsubscript{3}) δ (ppm) = 163.3 (d, $J_{CF} = 247.2$ Hz, C), 153.3 (C), 151.3 (C), 149.7 (CH), 147.5 (d, $J_{CF} = 2.5$ Hz, C), 146.7 (C), 136.7 (CH), 132.4 (d, $J_{CF} = 8.6$ Hz, CH), 130.6 (d, $J_{CF} = 8.6$ Hz, CH), 129.6 (C), 129.5 (2CH), 129.4 (2CH), 128.8 (C), 123.2 (CH), 121.5 (CH), 120.5 (CH), 120.4 (CH), 115.4 (d, $J_{CF} = 22.1$ Hz, CH), 113.0, (d, $J_{CF} = 22.1$ Hz, CH), 106.2 (CH), 61.4 (CH\textsubscript{2}).

19F NMR (282 MHz, CDCl\textsubscript{3}) δ (ppm) = -112.6.

EI HRMS: calcd. for C\textsubscript{23}H\textsubscript{18}FN\textsubscript{6} [M+1]$: 397.1570, found : 397.1571.
tert-Butyl \((S)-2-(5-methyl-3-(pyridin-2-yl)-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate\) (mixture of rotamers, 1:1.2) \(3k\)

![3k]

Following **Method 1** (slow addition), from 2-ethynylpyridine (0.10 mmol, 10 µl) and \(\text{tert-butyl-2-(1-(2-tosylhydrazineylidene)ethyl)pyrrolidine-1-carboxylate}\) (0.10 mmol, 38.2 mg), were obtained 16.8 mg of \(3k\) (50% isolated yield) as a colorless oil. \(\text{Rf} = 0.16\) (Hexane/EtOAc, 3:1).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 8.60 (bs, 1H, CH), 8.0 (bs, 1H, CH), 7.72 (bs, 1H, CH), 7.19 (bs, 1H, CH), 6.71 (bs, 1H, CH), 5.99 (bs, 1H, CH), 3.89-3.52 (m, 2H, CH\(_2\)), 2.53-2.38 (m, 4H, CH\(_2\)), 1.97-1.34 (m, 12H, 4 CH\(_3\)).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 152.7 (C), 150.3 (C), 148.8 (CH), 139.0 (C), 136.5 (CH), 122.1 (CH), 120.0 (CH), 103.5 (CH), 80.4 (CH), 69.6 (C), 46.8 (CH\(_3\)), 34.2 (CH), 32.9 (CH\(_2\)), 28.2 (2CH\(_3\)), 23.7 (CH\(_2\)), 22.3 (CH\(_2\)), 11.3 (CH\(_3\)). Some signals are splitted due to rotamers.

tert-Butyl \((S)-2-(3-(6-ethynylpyridin-2-yl)-5-methyl-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate\) (mixture of rotamers, 1:1.5) \(3l\)

![3l]

Following **Method 1** (slow addition), from 2,6-diethynylpyridine (0.34 mmol, 43 mg) and \(\text{tert-butyl-2-(1-(2-tosylhydrazineylidene)ethyl)pyrrolidine-1-carboxylate}\) (0.34 mmol, 130 mg), were obtained 37 mg of \(3l\) (53% isolated yield) as a yellowish oil. \(\text{Rf} = 0.34\) (Hexane/EtOAc, 2:1).
1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.99 (d, $J = 8.0$ Hz, 1H, CH), 7.65 (t, $J = 7.8$ Hz, 1H, CH), 7.37 (d, $J = 7.5$ Hz, 1H, CH), 6.71 (d, $J = 13.4$ Hz, 1H, CH), 5.66 (bs, 1H, CH), 3.92 – 3.44 (m, 2H, CH$_2$), 3.15 (s, 1H, CH), 2.52 (m, 2H, CH$_2$), 2.38 (s, 3H, CH$_3$), 1.99 (m, 4H, CH$_2$), 1.36 (m, 9H, Boc).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 153.6 (C), 149.9 (C), 141.5 (C), 140.7 (C), 138.9 (C), 136.4 (CH), 125.9 (CH), 119.8 (CH), 104.0 (CH), 83.3 (C), 80.4 (C), 79.9 (CH), 69.5 (CH), 46.8 (CH$_2$), 28.2 (CH$_3$), 23.7 (CH$_2$), 22.2 (CH$_2$), 11.3 (3 CH$_3$). Some signals are splitted due to rotamers.

(S)-2-(5-Methyl-1-(3-methyl-1-(1H-pyrrol-1-yl)butyl)-1H-pyrazol-3-yl)pyridine (3m)

Following Method 1, from 2-ethynlypyridine (0.20 mmol, 20 µl) and (S,E)-4-methyl-N’-(5-methyl-3-(1H-pyrrol-1-yl)hexan-2-ylidene)benzenesulfonohydrazide (0.24 mmol, 83 mg), were obtained 36 mg of 3m (51% isolated yield) as a colorless oil. Rf = 0.21 (Hexane/EtOAc, 2:1).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.62 (ddd, $J = 4.9$ Hz, 1H), 8.06 (dt, $J = 8.0$, 1.1 Hz, 1H), 7.75 (td, $J = 7.7$, 1.8 Hz, 1H), 7.22 (ddd, $J = 7.5$, 4.9, 1.2 Hz, 1H), 6.93 (t, $J = 2.2$ Hz, 2H), 6.69 (s, 1H), 6.16 (t, $J = 2.2$ Hz, 2H), 6.11 (t, $J = 7.5$ Hz 1H), 2.63 – 2.39 (m, 2H), 2.37 (s, 3H), 1.55 – 1.30 (m, 1H), 0.99 (d, $J = 6.7$ Hz, 3H), 0.97 (d, $J = 6.7$ Hz, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 152.5 (C) 150.9 (C), 149.2 (CH), 139.8 (C), 136.4 (CH), 122.3 (CH), 120.2 (CH), 118.9 (CH), 108.8 (CH), 104.9 (CH), 69.10 (CH), 43.5 (CH), 24.4 (CH), 22.4 (CH$_3$), 22.3 (CH$_3$), 11.2 (CH$_3$).

2-(1-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-5-ethynylpyridine (3n)

Following **Method 3**, from 2,5-diethynylpyridine (0.31 mmol, 40 mg), 2-bromo-1-phenylethan-1-one (0.68 mmol, 0.13 g), 3,5-dimethyl-1H-pyrazole (0.68 mmol, 65 mg) and 4-methylbenzenesulfonohydrazide (0.69 mmol, 0.128 g) were obtained 51.5 mg of 3n (47% isolated yield) as an orange solid. m.p. = 172 – 174 °C. Rf = 0.20 (Hexane/AcOEt, 3:1).

\[^1 \text{H} \text{NMR (300 MHz, CDCl}_3 \text{)} \delta (\text{ppm}) = 8.73 (\text{dd, } J = 2.1, 0.8 \text{ Hz, } 1\text{H, CH}), 7.99 (\text{dd, } J = 8.2, 0.9 \text{ Hz, } 1\text{H, CH}), 7.82 (\text{m, } 3\text{H, CH}), 7.52 (\text{m, } 3\text{H, CH}), 6.99 (\text{s, } 1\text{H, CH}), 6.19 (\text{s, } 2\text{H, CH}_2), 5.84 (\text{s, } 1\text{H, CH}), 3.27 (\text{s, } 1\text{H, CH}), 2.47 (\text{s, } 3\text{H, CH}_3), 2.20 (\text{s, } 3\text{H, CH}_3). \]

\[^{13} \text{C} \text{NMR (75 MHz, CDCl}_3 \text{)} \delta (\text{ppm}) = 152.4 (\text{CH}), 151.5 (\text{C}), 151.3 (\text{C}), 148.9 (\text{C}), 146.3 (\text{C}), 140.9 (\text{C}), 139.5 (\text{CH}), 129.7 (\text{2CH}), 129.6 (\text{C}), 129.0 (\text{CH}), 128.8 (\text{2CH}), 119.4 (\text{CH}), 117.8 (\text{C}), 106.4 (\text{CH}), 105.7 (\text{CH}), 80.7 (\text{CH}), 76.9 (\text{C}), 60.3 (\text{CH}_2), 13.6 (\text{CH}_3), 11.3 (\text{CH}_3). \]

1-((5-Phenyl-3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole (3o)

Following **Method 2**, from 2-ethynylpyridine (0.16 mmol, 16.2 µl), (E)-N’-(2-bromo-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.16 mmol, 60.2 mg) and 1H-
benzo[d][1,2,3]triazole (0.082 mmol, 9.8 mg) were obtained 9.0 mg of 3o (31% isolated yield).

Following Method 3, from 2-ethynylpyridine (0.16 mmol, 16.6 µl), 2-bromo-1-phenylethan-1-one (0.16 mmol, 32.6 mg), 1H-benzo[d][1,2,3]triazole (0.082 mmol, 9.8 mg) and 4-methylbenzenesulfonohydrazide (0.18 mmol, 33.5 mg) were obtained 9.8 mg of 3n (35% isolated yield).

Compound 3n is obtained as a yellow solid. m.p. = 137 – 138 °C. Rf = 0.19 (Hexane/EtOAc, 2:1).

1H NMR (300 MHz, CDCl3) δ (ppm) = 8.65 (d, J = 4.2 Hz, 1H, CH), 8.06 (t, J = 7.9 Hz, 2H, CH), 8.00 (d, J = 8.4 Hz, 1H, CH), 7.78 (td, J = 7.7, 1.8 Hz, 1H, CH), 7.63 (m, 2H, CH), 7.56 (m, 4H, CH), 7.41 (m, 1H, CH), 7.24 (m, 1H, CH), 7.02 (s, 1H, CH), 6.92 (s, 2H, CH2).

13C NMR (75 MHz, CDCl3) δ (ppm) = 152.5 (C), 151.6 (C), 149.3 (CH), 146.7 (C), 146.2 (C), 137.0 (CH), 133.2 (C), 133.0 (C), 129.6 (CH), 129.4 (2CH), 129.2 (2CH), 128.0 (CH), 124.6 (CH), 123.2 (CH), 120.5 (CH), 120.0 (CH), 111.0 (CH), 106.2 (CH), 60.3 (CH2).

1-((3-(6-Methoxypyridin-2-yl)-5-phenyl-1H-pyrazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole (3p)

Following Method 2, from 2-ethynyl-6-methoxypyridine (0.16 mmol, 62.7 mg), (E)-N-(2-bromo-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.16 mmol, 60.2 mg) and 1H-benzo[d][1,2,3]triazole (0.082 mmol, 9.8 mg) were obtained 14.4 mg of 3p (46% isolated yield) as a yellow solid. m.p. = 180 – 182 °C. Rf = 0.39 (Hexane/EtOAc, 8:1).
\[^1\]H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 8.06 (dd, \(J = 8.3, 5.4\) Hz, 2H, CH), 7.60 (m, 4H, CH), 7.53 (m, 4H, CH), 7.42 (m, 1H, CH), 6.90 (s, 1H, CH), 6.72 (s, 2H, \(\text{CH}_2\)), 6.71 (dd, \(J = 6.2, 2.8\) Hz, 1H, CH), 4.00 (s, 3H, OCH\(_3\)).

\[^{13}\]C NMR (75 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 163.8 (C), 152.8 (C), 149.0 (C), 146.2 (C), 146.0 (C), 139.1 (CH), 133.1 (C), 129.5 (3CH), 129.2 (C), 129.1 (2CH), 128.0 (CH), 124.4 (CH), 119.9 (CH), 112.6 (CH), 111.2 (CH), 110.0 (CH), 106.3 (CH), 60.2 (CH\(_2\)), 53.2 (OCH\(_3\)).

2-(1-((4,5-Diphenyl-1H-imidazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (3q)

![Diagram of 3q]

Following **General Method 2**, from 2-ethynylpyridine (0.16 mmol, 16.2 µl), \((E)-N'-(2-bromo-1-phenylethylidene)-4-methylbenzenesulfonylhydrazide\) (0.16 mmol, 60.2 mg) and 4,5-diphenyl-1H-imidazole (0.082 mmol, 18 mg) were obtained 10.5 mg of 3q (42\% isolated yield) as a yellow oil. Rf = 0.29 (Hexane/EtOAc, 1:3).

\[^1\]H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 8.64 (d, \(J = 4.8\) Hz, 1H, CH), 8.01 (dt, \(J = 7.9, 1.1\) Hz, 1H), 7.76 (dt, \(J = 7.9, 1.8\) Hz, 1H, CH), 7.67 (s, 1H, CH), 7.28 (m, 7H, CH), 7.22 (m, 2H, CH), 7.16 (m, 7H, CH), 6.99 (s, 1H, CH), 6.09 (s, 2H, CH\(_2\)).

\[^{13}\]C NMR (75 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 152.6 (C), 151.6 (C), 149.4 (CH), 145.8 (C), 138.2 (C), 136.9 (CH), 136.6 (CH), 134.1 (C), 130.9 (2CH), 129.5 (C), 129.2 (2CH), 129.1 (3CH), 129.0 (2CH), 128.9 (C), 128.7 (2CH), 128.1 (2CH), 126.6 (2CH), 126.5 (C), 123.0 (CH), 120.3 (CH), 106.22 (CH), 57.3 (CH\(_2\)).

EI HRMS: calcd. for C\(_{30}\)H\(_{24}\)N\(_5\) [M+1]+: 454.2026, found: 454.2026.
2-(1-((4,5-Diphenyl-1H-imidazol-1-yl)methyl)-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)pyridine (3r)

Following **Method 2**, from 2-ethynylpyridine (0.16 mmol, 16.2 µl), (E)-N’-(2-bromo-1-(4-methoxyphenyl)ethylidene)-4-methylbenzenesulfonohydrazide (0.16 mmol, 62.9 mg) and 4,5-diphenyl-1H-imidazole (0.082 mmol, 18.1 mg) were obtained 18.2 mg of **3r** (46% isolated yield) as a yellow oil. Rf = 0.22 (Hexane/EtOAc, 1:3).

1H NMR (300 MHz, CDCl3): δ (ppm) = 8.65 (d, J = 4.8 Hz, 1H, CH), 8.00 (d, J = 7.9 Hz, 1H, CH), 7.77 (td, J = 7.8, 1.8 Hz, 1H, CH), 7.69 (s, 1H, CH), 7.35 (m, 6H, CH), 7.17 (m, 4H), 7.12 (d, J = 8.7 Hz, 2H, CH), 6.90 (m, 3H, CH), 6.08 (s, 2H, CH2), 5.32 (s, 1H, CH), 3.88 (s, 3H, OCH3).

13C NMR (75 MHz, CDCl3) δ (ppm) = 160.2 (C), 152.5 (C), 151.7 (C), 149.4 (CH), 145.7 (C), 138.2 (C), 136.9 (CH), 136.6 (CH), 134.1 (C), 131.0 (2CH), 130.0 (2CH), 129.5 (C), 129.0 (2CH), 128.8 (CH), 128.1 (2CH), 127.6 (C), 126.6 (2CH), 126.5 (CH), 122.9 (CH), 121.4 (C), 120.3 (CH), 114.5 (2CH), 105.9 (CH), 57.2 (CH2), 55.4 (OCH3).

HRMS: calcd. For [M+H] C31H26N5O: 484.2131, found: 484.2132.

2-(1-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-6-ethynylpyridine (3s)
Following **Method 3**, from 2,6-diethynylpyridine (0.16 mmol, 20 mg), 2-bromo-1-phenylethanol (0.31 mmol, 31.7 mg), 3,5-dimethyl-1H-pyrazole (0.35 mmol, 33.2 mg) and 4-methylbenzenesulfonylhydrazide (0.35 mmol, 64.2 mg) were obtained 23.8 mg of **3s** (42% isolated yield) as a white solid. Rf = 0.18 (Hexane/EtOAc, 4:1).

\[\text{1H NMR (300 MHz, CDCl}_3\text{)} \delta (ppm) = 8.00 (d, J = 8.1 Hz, 1H, CH), 7.80 (m, 2H, CH), 7.68 (t, J = 7.8 Hz, 1H, CH), 7.48 (m, 3H, CH), 7.40 (d, J = 7.7 Hz, 1H, CH), 7.08 (s, 1H, CH), 6.18 (s, 2H, CH\textsubscript{2}), 5.84 (s, 1H, CH), 3.17 (s, 1H, CH), 2.47 (s, 3H, CH\textsubscript{3}), 2.18 (s, 3H, CH\textsubscript{3}). \]

\[\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta (ppm) = 152.6 (C), 151.3 (C), 148.8 (C), 146.1 (C), 141.7 (C), 140.9 (C), 136.6 (CH), 130.0 (C), 129.6 (2CH), 128.9 (CH), 128.7 (3CH), 126.4 (CH), 120.0 (CH), 106.4 (CH), 105.9 (CH), 83.1 (C), 60.2 (CH\textsubscript{2}), 13.6 (CH\textsubscript{3}), 11.3 (CH\textsubscript{3}). \]

EI HRMS: calcd. for C\textsubscript{22}H\textsubscript{20}N\textsubscript{5}[M+1]+ : 354.1716, found : 354.1713.

2-(1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)pyridine (3t)

Following **Method 3**, from 2-ethylpyridine (0.16 mmol, 17 µl), 2-bromo-1-(4-methoxyphenyl)ethanol (0.16 mmol, 37.6 mg), 3,5-dimethyl-1H-pyrazole (0.082 mmol, 8 mg) and 4-methylbenzenesulfonylhydrazide (0.12 mmol, 33.6 mg) were obtained 13.9 mg of **3t** as a yellowish oil (47% isolated yield). Rf = 0.61 (Hexane/EtOAc, 2:1).

\[\text{1H NMR (300 MHz, CDCl}_3\text{)} \delta (ppm) = 8.64 (d, J = 4.9 Hz, 1H, CH), 8.00 (d, J = 7.9 Hz, 1H, CH), 7.77 (m, 3H, CH), 7.25 (m, 1H, CH), 7.06 (d, J = 8.8 Hz, 2H, CH), 7.01 (s, 1H, CH), 6.18 (s, 2H, CH\textsubscript{2}), 5.84 (s, 1H, CH), 3.90 (s, 3H, OCH\textsubscript{3}), 2.50 (s, 3H, CH\textsubscript{3}), 2.19 (s, 3H, CH\textsubscript{3}). \]
13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 160.1 (C), 151.9 (C), 151.4 (C), 148.9 (CH), 148.8 (C), 146.1 (C), 140.9 (C), 136.8 (CH), 131.0 (2CH), 122.6 (CH), 122.0 (C), 120.3 (CH), 114.2 (2CH), 106.4 (CH), 105.1 (CH), 60.2 (CH$_2$), 55.4 (CH$_3$), 13.6 (CH$_3$), 11.37 (CH$_3$).

EI HRMS: calcd. for C$_{21}$H$_{22}$N$_5$O$^+$: 360.1818, found: 360.1819.

2-(1-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)-6-methoxypyridine (3u)

Following **Method 3**, from 2-ethynyl-6-methoxypyridine (0.1 mmol, 38.2 mg), 2-bromo-1-(4-methoxyphenyl)ethan-1-one (0.1 mmol, 22.9 mg), 3,5-dimethyl-1H-pyrazole (0.05 mmol, 4.81 mg) and 4-methylbenzenesulfonohydrazide (0.15 mmol, 27.9 mg) were obtained 18.1 mg of 3u (31% isolated yield) as a yellowish oil. Rf = 0.26 (Hexane/DCM, 1:2).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.77 (d, $J = 8.8$ Hz, 2H, CH), 7.58 (m, 2H, CH), 7.06 (d, $J = 8.8$ Hz, 2H, CH), 6.90 (s, 1H, CH), 6.68 (dd, $J = 7.0$, 2.0 Hz, 1H, CH), 6.15 (s, 2H, CH$_2$), 5.83 (s, 1H, CH), 4.00 (s, 3H, OCH$_3$), 3.90 (s, 3H, OCH$_3$), 2.53 (s, 3H, CH$_3$), 2.20 (s, 3H, CH$_3$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 163.6 (C), 160.1 (C), 151.9 (C), 149.5 (C), 148.7 (C), 145.7 (C), 143.0 (C), 142.9 (C), 141.0 (C), 138.9 (CH), 131.1 (2 x CH), 114.1 (2 x CH), 112.5 (CH), 109.4 (CH), 106.3 (CH), 105.2 (CH), 60.1 (CH$_2$), 55.4 (CH$_3$), 53.2 (CH$_3$), 13.6 (CH$_3$), 11.4 (CH$_3$).

EI HRMS: calcd. for C$_{22}$H$_{24}$N$_5$O$^+$: 390.1923, found: 390.1925.
2-(1-((4,5-diphenyl-1H-imidazol-1-yl)methyl)-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)-6-methoxypyridine (3v)

Following Method 3, from 2-ethynyl-6-methoxypyridine (0.1 mmol, 38.2 mg), 2-bromo-1-(4-methoxyphenyl)ethan-1-one (0.1 mmol, 22.9 mg), 4,5-diphenyl-1H-imidazole (0.05 mmol, 11 mg) and 4-methylbenzenesulfonylhydrazide (0.15 mmol, 27.9 mg) were obtained 11 mg of 3v (43% isolated yield) as a yellow oil. Rf = 0.32 (Hexane/EtOAc, 1:1).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 7.65 (m, 2H, CH), 7.59 (m, 1H, CH), 7.39 (m, 5H, CH), 7.17 (m, 7H, CH), 6.87 (m, 3H, CH), 6.71 (d, \(J = 8.0 \text{ Hz}\), 1H, CH), 6.06 (s, 2H, CH\(_2\)), 4.01 (s, 3H, OCH\(_3\)), 3.88 (s, 3H, OCH\(_3\)).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 163.7 (C), 160.2 (C), 152.7 (C), 149.1 (C), 145.3 (C), 139.1 (CH), 138.1 (C), 136.9 (CH), 134.2 (C), 131.0 (2CH), 130.1 (2CH), 129.6 (C), 129.0 (2CH), 128.8 (CH), 128.1 (2CH), 127.6 (C), 126.6 (2CH), 126.5 (CH), 121.6 (C), 114.5 (2CH), 112.7 (CH), 109.8 (CH), 106.4 (CH), 57.1 (CH\(_2\)), 55.4 (CH\(_3\)), 53.2 (CH\(_3\)).

EI HRMS: calcd. for C\(_{32}\)H\(_{28}\)N\(_5\)O\(_2\) [M+1]\(^+\) : 514.2237, found : 514.2238.

2-(1-((4,5-Diphenyl-1H-imidazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-6-ethynylpyridine (3w)
Following **Method 3**, from 2,6-diethynylpyridine (0.16 mmol, 20 mg), 2-bromo-1-phenylethan-1-one (0.63 mmol, 0.125 g), 4,5-diphenyl-1H-imidazole (0.69 mmol, 0.15 g) and 4-methylbenzenesulfonohydrazide (0.69 mmol, 0.128 g) were obtained 33.7 mg of 3w (45% isolated yield) as a yellow oil. Rf = 0.4 (Hexane/EtOAc, 1:2).

\[^{1}H \text{ NMR (300 MHz, CDCl}_3 \delta (ppm) = 7.98 (dd, J = 8.0, 0.8 Hz, 1H, CH), 7.74 (t, J = 7.8 Hz, 1H, CH), 7.65 (s, 1H, CH), 7.40 (m, 10H, CH), 7.18 (ddd, J = 6.3, 4.4, 1.7 Hz, 6H, CH), 7.08 (s, 1H, CH), 6.07 (s, 2H, CH\textsubscript{2}), 3.18 (s, 1H, CH). \]

\[^{13}C \text{ NMR (75 MHz, CDCl}_3 \delta (ppm) = 152.1 (C), 151.9 (C), 145.7 (C), 141.8 (C), 138.2 (C), 137.0 (CH), 136.7 (CH), 134.1 (C), 130.9 (2CH), 129.5 (C), 129.2 (CH), 129.1 (C), 129.0 (5CH), 128.9 (CH), 128.7 (2CH), 128.1 (2CH), 127.6 (C), 126.7 (CH), 126.6 (2CH), 126.5 (CH), 120.1 (CH), 106.7 (CH), 83.0 (C), 57.2 (CH\textsubscript{2}). \]

EI HRMS: calcd. for C\textsubscript{32}H\textsubscript{24}N\textsubscript{5} [M+1]+ : 478.2021, found : 478.2026.

8-Methoxy-1-(pyridin-2-yl)-3,4,5,6-tetrahydrobenzo[3,4]cyclohepta[1,2-c]pyrazole (4a)

[Image of 4a]

Following **Method 1**, from 2-ethynylpyridine (0.1 mmol, 10\textmu l) and N’-(6-methoxy-3,4-dihydronaphthalen-1(2\textit{H})-ylidene)-4-methylbenzenesulfonohydrazide (0.12 mmol, 41.3 mg), were obtained 14.4 mg of 4a (50% isolated yield) as a colorless oil. Rf = 0.52 (Hexane/EtOAc, 3:1). In this case the slow addition was not possible as the tosylhydrazone employed was not soluble enough.

\[^{1}H \text{ NMR (300 MHz, CDCl}_3 \delta (ppm) = 8.65 (s, 1H, CH), 7.70 (d, J = 8.0 Hz, 1H, CH), 7.61 (t, J = 7.7 Hz, 1H, CH), 7.32-7.18 (m, 3H, CH), 6.93 (d, J = 2.6 Hz, 1H, CH), 6.81 (dd, J = 8.4, 2.7 Hz, 1H, CH), 3.88 (s, 3H, CH\textsubscript{3}), 2.69 (td, J = 7.2, 2.9 Hz, 4H, CH\textsubscript{2}), 2.24 (m, 2H, CH\textsubscript{2}). \]
13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 158.5 (C), 152.7 (C), 149.5 (CH), 148.7 (C), 142.4 (C), 136.9 (C), 136.6 (CH), 129.7 (CH), 125.6 (C), 122.7 (CH), 120.7 (CH), 117.3 (C), 115.1 (CH), 111.6 (CH), 55.3 (CH$_3$), 32.6 (CH$_2$), 30.7 (CH$_2$), 23.4 (CH$_2$).

El HRMS: calcd. for C$_{18}$H$_{16}$N$_3$O [M+1]$^+$: 292.1444; found 292.1444.

8-Methoxy-1-(6-methylpyridin-2-yl)-3,4,5,6-tetrahydrobenzo[3,4]cyclohepta[1,2-c]pyrazole (4b)

Following Method 1, from 2-ethynyl-6-methylpyridine (0.17 mmol, 23.3 mg) and N^-(6-methoxy-3,4-dihydronaphthalen-1(2H)-ylidene)-4-methylbenzenesulfonohydrazide (0.20 mmol, 68.9 mg), were obtained 36.8 mg of 4b (71% isolated yield) as a colorless oil. Rf = 0.18 (Hexane/EtOAc, 1:3).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.48 (m, 2H, CH), 7.33 (m, 2H, CH), 7.06 (dd, J = 6.0, 2.6 Hz, 1H, CH), 6.92 (d, J = 2.6 Hz, 1H, CH), 6.80 (dd, J = 8.4, 2.7 Hz, 1H, CH), 3.87 (s, 3H, OCH$_3$), 2.68 (td, J = 7.2, 3.2 Hz, 4H, CH$_2$), 2.60 (s, 3H, CH$_3$), 2.24 (q, J = 7.1 Hz, 2H, CH$_2$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 158.5 (C), 158.4 (C), 152.7 (C), 147.9 (C), 142.4 (C), 137.0 (C), 136.8 (CH), 129.8 (CH), 125.8 (C), 122.3 (CH), 117.6 (CH), 117.0 (C), 115.0 (CH), 111.5 (CH), 55.2 (CH$_3$), 32.6 (CH$_2$), 30.7 (CH$_2$), 24.5 (CH$_3$), 23.5 (CH$_2$).

El HRMS: calcd. for C$_{19}$H$_{20}$N$_3$O [M+1]$^+$: 306.1604; found 306.1601.
 Following Method 1, from 2,6-diethynylpyridine (0.034 mmol, 4.3 mg) and (E)-N’-(2-((1H-indol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (5a), were obtained 7 mg of 5a (35% isolated yield) as a white solid. m.p. = 185 - 187 °C. Rf = 0.39 (Hexane/EtOAc, 3:1). In this case the slow addition of the tosylhydrazone was not possible owing to the lack of solubility of the hydrazone as starting material.

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) (ppm) = 8.01 (d, \(J = 7.7\) Hz, 2H, CH), 7.81 (dd, \(J = 8.3, 7.3\) Hz, 1H, CH), 7.48 (m, 8H, CH), 7.34 (m, 4H, CH), 7.19 (m, 2H, CH), 7.09 (m, 4H, CH), 7.00 (s, 2H, CH), 6.90 (d, \(J = 3.3\) Hz, 2H, CH), 6.38 (dd, \(J = 3.3, 0.7\) Hz, 2H, CH), 6.35 (s, 4H, CH\(_2\)).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) (ppm) = 152.0 (C), 151.4 (C), 145.3 (C), 137.2 (CH), 135.6 (C), 130.1 (C), 129.4 (2CH), 129.2 (CH), 128.9 (2CH), 128.7 (C), 127.4 (CH), 122.0 (CH), 120.7 (CH), 120.1 (CH), 119.1 (CH), 110.0 (CH), 106.6 (CH), 103.0 (CH), 59.0 (CH\(_2\)).

HRMS: calcd. For [M+H] C\(_{41}\)H\(_{32}\)N\(_7\): 622.2641, found: 622.2642.
2,6-bis(1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (5b)

Following Method 1 (slow addition), from 2,6-diethynylpyridine (0.053 mmol, 6.8 mg) and (E)-N°-(2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-phenylethylidene)-4-methylbenzenesulfonylhydrazide (0.18 mmol, 70.5 mg), were obtained 11.7 mg of 5b as a white solid (44% isolated yield). m.p. = 192 - 197 °C. Rf = 0.27 (Hexane/EtOAc, 2:1).

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3\] \delta (ppm) = 7.94 (d, J = 7.7 Hz, 2H, CH), 7.82 (m, 4H, CH), 7.74 (dd, J = 8.2, 7.4 Hz, 1H, CH), 7.49 (m, 6H, CH), 7.35 (m, 1H, CH), 7.10 (s, 2H, CH), 6.19 (s, 4H, CH\(_2\)), 5.83 (s, 2H, CH), 2.49 (s, 6H, CH\(_3\)), 2.19 (s, 6H, CH\(_3\)).

\[^{13}\text{C} \text{NMR (75 MHz, CDCl}_3\] \delta (ppm) = 152.2 (C), 151.5 (C), 148.7 (C), 145.9 (C), 140.9 (CH), 136.9 (C), 129.9 (C), 129.7 (2CH), 128.9 (CH), 128.7 (2CH), 118.9 (CH), 106.3 (CH), 105.7 (CH), 60.3 (CH\(_2\)), 13.6 (CH\(_3\)), 11.3 (CH\(_3\)).

tert-Butyl (S)-2-(3-((6-(1-((R)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)-5-methyl-1H-pyrazol-3-yl)pyridin-2-yl)-5-methyl-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate (mixture of rotamers: 1:1.1) (5c)

Following Method 1, from 2,6-diethynylpyridine (0.17 mmol, 22 mg) and 3 equivalents of tert-butyl-2-(1-(2-tosylhydrazineylidene)ethyl)pyrrolidine-1-carboxylate (0.52
mmol, 199 mg), were obtained 29 mg of 5c (30% isolated yield). In this case, the product was obtained carrying out the reaction at 90 ºC, as we observed similar yield at 110 ºC. Compound 5c is obtained as a yellow-lish oil. Rf = 0.69 (Hexane/EtOAc, 2:1).

1H NMR (300 MHz, CDCl₃) δ (ppm) = 7.85 (m, 2H, CH), 7.67 (d, J = 7.1 Hz, 1H, CH), 6.61 (m, 2H, rotamers), 5.96 (m, 2H, rotamers), 3.81 (m, 2H, rotamers), 3.48 (m, 2H, rotamers), 2.78 (m, 2H, rotamers), 2.54 (s, 3H), 2.41 (s, 3H), 1.87 (m, 6H), 1.41 (s, 9H, rotamers), 1.30 (s, 9H, rotamers).

13C NMR (75 MHz, CDCl₃) δ (ppm) = 153.6 (C), 152.2 (C), 151.1 (2C), 140.4 (2C), 138.5 (CH), 136.5 (2C), 118.1 (2CH), 103.6 (2CH), 80.3 (CH), 79.8 (CH), 69.5 (C), 68.9 (C), 46.8 (2CH₂), 34.2 (CH₂), 32.9 (CH₂), 28.4 (3CH₃), 28.3 (CH₂), 23.8 (CH₂), 22.2 (CH₂), 11.3 (2CH₃).

2,6-Bis(8-methoxy-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepin-2-yl)pyridine (5d)

Following Method 1 with slow addition, from 2,6-diethylpyridine (0.17 mmol, 22 mg) and 4 equivalents of N-(2-methoxycyclohexylidene)-4-methylbenzenesulfonylhydrazide (0.68 mmol, 201 mg), we obtained 45 mg of 5d (65% isolated yield). In this case, the product was obtained carrying out the reaction at 90 ºC, as we observed similar yield at 110 ºC. Compound 5d is obtained as a yellow-lish oil. Rf = 0.56 (Hexane/EtOAc, 2:1).

1H NMR (300 MHz, CDCl₃) δ (ppm) = 7.84 (dd, J = 8.2, 1.0 Hz, 2H, CH), 7.74 (dd, J = 8.7, 6.9 Hz, 1H, CH), 6.81 (s, 2H, 2CH), 5.59 (d, J = 3.5 Hz, 2H, 2CH), 3.25 (s, 6H, 2OCH₃), 2.96 (dd, J = 13.0, 5.7 Hz, 1H, CH₂), 2.79 (t, J = 13.4 Hz, 2H, CH₂), 2.31 (m, 3H, CH₂, CH₂), 2.09 (m, 3H, OCH₃), 1.83 (m, 4H, 2CH₂), 1.45 (q, J = 12.9 Hz, 2H, CH₂).

13C NMR (75 MHz, CDCl₃) δ (ppm) = 151.8 (2C), 149.8 (2C), 145.5 (CH), 137.1 (2C), 118.5 (2CH), 105.6 (2CH), 91.9 (2CH), 55.8 (2OCH₃), 32.6 (CH₂), 27.4 (CH₂), 25.9 (CH₂), 23.2 (CH₂).
HRMS: calcd. For [M+H] C_{23}H_{30}N_{5}O_{2}: 408.2321, found: 408.2458.

1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-3-(4-(trifluoromethyl)phenyl)-1H-pyrazole (8a)

Following **Method 2**, from 1-ethynyl-4-(trifluoromethyl)benzene (0.15 mmol, 25.6 mg), (E)-N'-((2-bromo-1-phenylethylidene)-4-methylbenzenesulfonylhydrazide (0.15 mmol, 55.1 mg) and 3,5-dimethyl-1H-pyrazole (0.075 mmol, 7.21 mg) were obtained 10.8 mg of 8a (41% isolated yield) as a white solid. m.p. = 104 – 107 °C. Rf = 0.69 (Hexane/DCM, 1:2).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 7.92 (d, \(J = 8.1\) Hz, 2H, CH), 7.81 (dd, \(J = 7.9, 1.5\) Hz, 2H, CH), 7.64 (d, \(J = 8.2\) Hz, 2H, CH), 7.51 (m, 3H, CH), 6.67 (s, 1H, CH), 6.17 (s, 2H, CH\(_2\)), 5.85 (s, 1H, CH), 2.52 (s, 3H, CH\(_3\)), 2.21 (s, 3H, CH\(_3\)).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 150.1 (C), 149.0 (C), 146.3 (C), 141.0 (C), 136.6 (C), 129.7 (2CH), 129.6 (q, \(J_{CF} = 9.0\) Hz, C), 129.1 (CH), 128.8 (2CH), 126.1 (C), 125.8 (2CH), 125.6 (CH), 125.5 (q, \(J_{CF} = 4.3\) Hz, 2CH), 106.4 (CH), 104.3 (CH), 60.1 (CH\(_2\)), 13.6 (CH\(_3\)), 11.4 (CH\(_3\)).

\(^{19}\)F NMR (282 MHz, CDCl\(_3\)) \(\delta\) (ppm) = -62.5

HRMS: calcd. For [M+H] C_{22}H_{20}F_{3}N_{4}: 397.1629, found: 397.1635.

1-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-3-(4-fluorophenyl)-5-phenyl-1H-pyrazole (8b)
Following **General Method 2**, from 1-ethynyl-4-fluorobenzene (0.16 mmol, 18.7 µl), (E)-N’-(2-bromo-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.16 mmol, 58.8 mg) and 3,5-dimethyl-1H-pyrazole (0.082 mmol, 7.9 mg) were obtained 8.6 mg of **8b** (40% isolated yield) as a yellow solid. m.p. = 123 – 125 ºC. Rf = 0.55 (Hexane/DCM, 1:2).

\[1^\text{H} \text{NMR (300 MHz, CDCl}_3 \delta (ppm) = 7.80 (m, 4H, CH), 7.52 (m, 3H, CH), 7.10 (t, J = 8.7 Hz, 2H, CH), 6.57 (s, 1H, CH), 6.15 (s, 2H, CH\textsubscript{2}), 5.84 (s, 1H, CH), 2.50 (s, 3H, CH\textsubscript{3}), 2.20 (s, 3H, CH\textsubscript{3}). \]

\[1^\text{C} \text{NMR (75 MHz, CDCl}_3 \delta (ppm) = 162.6 (d, J\textsubscript{CF} = 251.2 Hz, C), 150.6 (C), 148.8 (C) 146.1 (C), 141.0 (C), 129.8 (C), 129.7 (2CH), 129.3 (d, J\textsubscript{CF} = 4.6 Hz, C), 129.0 (CH), 128.7 (2CH), 127.4 (d, J\textsubscript{CF} = 7.6 Hz, 2CH), 125.6 (CH), 115.6 (CH), 115.4 (d, J\textsubscript{CF} = 22.4 Hz, 2CH), 106.3 (CH), 103.7 (CH), 60.0 (CH\textsubscript{2}), 13.6 (CH\textsubscript{3}), 11.4 (CH\textsubscript{3}). \]

\[1^\text{F} \text{NMR (282 MHz, CDCl}_3 \delta (ppm) = -114.24. \]

HRMS: calcd. For [M+H] C\textsubscript{21}H\textsubscript{20}FN\textsubscript{4}: 347.1668, found: 347.1667.

1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-3,5-diphenyl-1H-pyrazole (8c)

Following **Method 3**, from ethynylbenzene (0.16 mmol, 18 µl), 2-bromo-1-phenylethan-1-one (0.16 mmol, 32.6 mg), 3,5-dimethyl-1H-pyrazole (0.082 mmol, 7.9 mg) and 4-methylbenzenesulfonohydrazide (0.16 mmol, 33.5 mg) were obtained 11 mg of **8c** (41% isolated yield) as a colorless oil. Rf = 0.24 (DCM).

\[1^\text{H} \text{NMR (300 MHz, CDCl}_3 \delta (ppm) = 7.82 (m, 4H, CH), 7.49 (m, 3H, CH), 7.39 (t, J = 7.3 Hz, 2H, CH), 7.32 (d, J = 7.3 Hz, 1H, CH), 6.63 (s, 1H, CH), 6.16 (s, 2H, CH\textsubscript{2}), 5.83 (s, 1H, CH), 2.53 (s, 3H, CH\textsubscript{3}), 2.20 (s, 3H, CH\textsubscript{3}). \]

\[1^\text{C} \text{NMR (75 MHz, CDCl}_3 \delta (ppm) = 151.5 (C), 148.7 (C), 145.9 (C), 141.0 (C), 133.1 (C), 129.9 (C), 129.6 (2CH), 128.9 (CH), 128.7 (2CH), 128.5 (2CH), 127.9 (CH), 125.6 (2CH), 106.3 (CH), 103.9 (CH), 60.1 (CH\textsubscript{2}), 13.6 (CH\textsubscript{3}), 11.4 (CH\textsubscript{3}). \]

HRMS: calcd. For [M+H] C\textsubscript{21}H\textsubscript{21}N\textsubscript{4}: 329.1762, found: 329.1761.
1-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-3-(4-methoxyphenyl)-5-phenyl-1H-pyrazole (8d)

Following General Method 2, from 1-ethynyl-4-methoxybenzene (0.32 mmol, 41.5 µl), N'-{(2-bromo-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.32 mmol, 0.12 g) and 3,5-dimethyl-1H-pyrazole (0.16 mmol, 0.16 g) were obtained 33.3 mg of 8d (58% isolated yield) as a yellow solid. m.p. = 130 – 134 °C. Rf = 0.36 (Hexane/EtOAc, 1:1).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.79 (ddd, $J = 8.9, 7.5, 1.9$ Hz, 4H, CH), 7.51 (ddd, $J = 8.6, 7.6, 6.1$ Hz, 3H, CH), 6.95 (d, $J = 8.9$ Hz, 2H, CH), 6.55 (s, 1H, CH), 6.14 (s, 2H, CH$_2$), 5.83 (s, 1H, CH), 3.86 (s, 3H, OCH$_3$), 2.51 (s, 3H, CH$_3$), 2.19 (s, 3H, CH$_3$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 159.5 (C), 151.3 (C), 148.6 (C), 145.9 (C), 141.0 (C), 130.0 (C), 129.6 (2CH), 128.8 (CH), 128.7 (2CH), 128.4 (C), 126.9 (2CH), 113.9 (2CH), 106.3 (CH), 103.5 (CH), 60.1 (CH$_2$), 55.3 (OCH$_3$), 13.6 (CH$_3$), 11.4 (CH$_3$).

HRMS: calcd. For [M+H] C$_{22}$H$_{23}$N$_4$O: 359.1865, found: 359.1866.

1-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-3-(thiophen-3-yl)-1H-pyrazole (8e)

Following General Method 2, from 3-ethynlythiophene (0.32 mmol, 31.5 µl), N’-(2-bromo-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.32 mmol, 0.12 g) and 3,5-dimethyl-1H-pyrazole (0.16 mmol, 0.16 g) were obtained 25.1 mg of 8e (47% isolated yield) as a yellow oil. Rf = 0.62 (Hexane/EtOAc, 3:1).
1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.80 (dd, $J = 8.0$, 1.5 Hz, 2H, CH), 7.59 (dd, $J = 3.0$, 1.2 Hz, 1H, CH), 7.51 (m, 4H, CH), 7.35 (dd, $J = 5.0$, 3.0 Hz, 1H, CH), 6.51 (s, 1H, CH), 6.14 (s, 2H, CH$_2$), 5.82 (s, 1H, CH), 2.49 (d, $J = 0.5$ Hz, 3H, CH$_3$), 2.19 (s, 3H, CH$_3$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 148.7 (C), 147.9 (C), 145.7 (C), 141.0 (C), 135.0 (C), 129.8 (C), 129.7 (2CH), 128.9 (CH), 128.7 (2CH), 126.0 (CH), 125.8 (CH), 120.8 (CH), 106.3 (CH), 104.3 (CH), 60.1 (CH$_2$), 13.6 (CH$_3$), 11.3 (CH$_3$).

HRMS: calcd. For [M+H] C$_{19}$H$_{19}$N$_4$S: 335.1319, found: 335.1325.

2-((5-(4-Methoxyphenyl)-3-phenyl-1H-pyrazol-1-yl)methyl)-2H-benzo[d][1,2,3]triazole (8f)

Following General Method 2, from 1-ethynyl-4-methoxybenzene (0.32 mmol, 41.2 µl), N’-(2-bromo-1-phenylethylidene)benzenesulfonohydrazide (0.32 mmol, 0.12 g) and 2H-benzo[d][1,2,3]triazole (0.16 mmol, 19 mg) were obtained 31.7 mg of 8f (52% isolated yield) as a yellow oil. Rf = 0.64 (Hexane/EtOAc, 1:1).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.07 (d, $J = 9.3$ Hz, 2H, CH), 7.84 (dd, $J = 11.8$, 4.8 Hz, 4H, CH), 7.58 (m, 4H, CH), 6.98 (d, $J = 8.8$ Hz, 2H, CH), 6.86 (s, 2H, CH$_2$), 6.59 (s, 1H, CH), 3.87 (s, 3H, OCH$_3$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 159.8 (C), 152.1 (C), 146.3 (C), 146.2 (C), 133.1 (C), 129.9 (C), 129.4 (2CH), 129.3 (C), 129.1 (CH), 129.0 (CH), 128.7 (CH), 128.0 (CH), 127.0 (2CH), 126.1 (CH), 124.4 (CH), 119.8 (CH), 114.1 (CH), 111.3 (CH), 104.3 (CH), 60.1 (CH$_2$), 55.3 (OCH$_3$).

HRMS: calcd. For [M+H] C$_{23}$H$_{20}$N$_5$O: 382.1655, found: 382.1656.
1-((4,5-Diphenyl-1H-imidazol-1-yl)methyl)-3,5-diphenyl-1H-pyrazole (8g)

Following Method 2, from phenylacetylene (0.32 mmol, 36 µl), N′-(2-bromo-1-phenylethylidene)benzenesulfonohydrazide (0.32 mmol, 0.12 g) and 4,5-diphenyl-1H-imidazole (0.16 mmol, 35 mg) were obtained 48.5 mg of 8g (67% isolated yield) as a yellow oil. Rf = 0.10 (Hexane/EtOAc, 3:1).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.85 (m, 2H, CH), 7.65 (s, 1H, CH), 7.41 (m, 14H, CH), 7.19 (m, 4H, CH), 6.64 (s, 1H, CH), 6.06 (s, 2H, CH$_2$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 152.3 (C), 145.7 (C), 138.1 (C), 136.9 (CH), 134.1 (C), 132.6 (C), 131.0 (2CH), 129.5 (C), 129.4 (C), 129.2 (CH), 129.1 (2CH), 129.0 (2CH), 128.9 (CH), 128.7 (2CH), 128.7 (2CH), 128.4 (CH), 128.3 (2CH), 126.6 (2CH), 126.5 (CH), 125.8 (2CH), 125.1 (C), 105.0 (CH), 57.1 (CH$_2$).

HRMS: calcd. For [M+H] C$_{31}$H$_{25}$N$_4$: 453.2061, found: 453.2074.

1-((4,5-Diphenyl-1H-imidazol-1-yl)methyl)-3-(4-methoxyphenyl)-5-phenyl-1H-pyrazole (8h)

Following Method 2, from phenylacetylene (0.32 mmol, 36 µl), N′-(2-bromo-1-phenylethylidene)-4-methylbenzenesulfonohydrazide (0.32 mmol, 0.12 g) and 4,5-diphenyl-1H-imidazole (0.16 mmol, 35 mg) were obtained 34.7 mg of 8h (45% isolated yield) as a yellow oil. Rf = 0.25 (Hexane/diethyl ether, 1:30).
1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.84 (m, 3H, CH), 7.67 (s, 1H, CH), 7.56 (d, J = 7.8 Hz, 1H, CH), 7.42 (m, 6H, CH), 7.17 (m, 7H, CH), 6.89 (d, J = 8.8 Hz, 3H, CH), 6.58 (s, 1H, CH), 6.05 (s, 2H, CH$_2$), 3.88 (s, 3H, OCH$_3$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 160.2 (C), 152.2 (C), 145.5 (C), 136.9 (CH), 134.2 (C), 132.7 (C), 131.0 (2CH), 130.0 (2CH), 129.0 (2CH), 128.8 (CH), 128.7 (2CH), 128.5 (CH), 128.2 (CH), 128.1 (2CH), 126.6 (2CH), 126.5 (C), 125.7 (2CH), 121.6 (C), 114.5 (2CH), 114.0 (C), 113.7 (C), 104.7 (CH), 57.0 (CH$_2$), 55.4 (OCH$_3$).

HRMS: calcd. For [M+H] C$_{32}$H$_{27}$N$_4$O: 483.2165, found: 483.2179.

4. Synthesis of polyheterocycle 10 by click reaction starting from 3s.

A reaction tube was charged with 1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-6-ethynlypyridine (3s) (0.07 mmol, 25 mg), 2-bromo-1-phenylethan-1-one 10 (0.07 mmol, 14 mg), sodium azide (0.074 mmol, 5 mg), CuSO$_4$·5H$_2$O (5 mol%), sodium ascorbate (10 mol%) and a 1:1 mixture of 1BuOH/H$_2$O (4 ml). After 2 h at 60 °C, the reaction was stirred at room temperature during 20 min and 5 ml of 10% NH$_3$ solution were added to the reaction mixture. The yellow precipitate formed was filtered and dried under vacuum. The crude was purified by flash chromatography (silica gel, a mixture of Hexane/AcOEt 1:1 as eluent) and 9.4 mg of the pure product 10 as a yellowish solid were obtained.
2-(5-(6-(1-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridin-2-yl)-1H-1,2,3-triazol-1-yl)-1-phenylethan-1-one (10)

m. p. = 230 – 232 °C
Rf = 0.43 (Hexane/AcOEt, 1:1)

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.43 (s, 1H, CH), 8.13 (d, J = 7.6 Hz, 1H, CH), 8.04 (d, J = 7.4 Hz, 2H, CH), 7.95 (d, J = 7.5 Hz, 1H, CH), 7.82 (t, J = 7.6 Hz, 3H, CH), 7.67 (t, J = 7.4 Hz, 1H, CH), 7.51 (m, 5H, CH), 7.04 (s, 1H, CH), 6.19 (s, 2H, CH$_2$), 5.93 (s, 2H, CH$_2$), 5.83 (s, 1H, CH), 2.48 (s, 3H, CH$_3$), 2.17 (s, 3H, CH$_3$).

13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 190.0 (C), 151.9 (C), 151.6 (C), 149.6 (C), 149.0 (C), 148.8 (C), 146.0 (C), 141.0 (C), 137.3 (CH), 134.6 (CH), 134.0 (C), 129.8 (C), 129.7 (2CH), 129.2 (2CH), 128.9 (CH), 128.7 (2CH), 128.2 (2CH), 124.2 (CH), 119.2 (CH), 119.1 (CH), 106.4 (CH), 105.7 (CH), 60.2 (CH$_2$), 55.6 (CH$_2$), 13.6 (CH$_3$), 11.3 (CH$_3$).

HRMS: calcd. For [M+H] C$_{30}$H$_{27}$N$_8$O: 515.5930, found: 515.5932.
5. Copies of the 1H and 13C NMR spectra.

2-(1-Benzyl-5-phenyl-^{1}H-pyrazol-3-yl)pyridine (3a)
2-(1-benzyl-5-phenyl-1H-pyrazol-3-yl)-6-bromopyridine (3b)
2-(1-(Methoxymethyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (3c)
8-Methoxy-2-(pyridin-2-yl)-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepine (3d)
(R)-8-methoxy-2-(6-methylpyridin-2-yl)-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepine (3e)
(R)-2-(6-bromopyridin-2-yl)-8-methoxy-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepine (3f)
2-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-5-phenyl-1H-pyrazol-3-yl]pyridine (3g)
2-(1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-6-methoxypyridine (3h)
1-[(5-Phenyl-3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl]-1H-indole (3i)
2-(1-((4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (3j)
tert-Butyl (S)-2-(5-methyl-3-(pyridin-2-yl)-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate (3k)
tert-Butyl (S)-2-(3-(6-ethynylpyridin-2-yl)-5-methyl-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate (3l)
(S)-2-(5-methyl-1-(3-methyl-1-(1H-pyrrolo-1-yl)butyl)-1H-pyrazol-3-yl)pyridine
(3m)
2-(1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-5-ethynylpyridine (3n)
1-((5-phenyl-3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole (3a)
1-((3-(6-methoxypyridin-2-yl)-5-phenyl-1H-pyrazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole (3p)
2-(1-((4,5-diphenyl-1H-imidazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (3q)
2-(1-((4,5-diphenyl-1H-imidazol-1-yl)methyl)-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)pyridine (3r)
2-(1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-6-ethynylpyridine (3s)
2-(1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)pyridine (3t)
2-(1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)-6-methoxypyridine (3u)
2-(1-((4,5-diphenyl-1H-imidazol-1-yl)methyl)-5-(4-methoxyphenyl)-1H-pyrazol-3-yl)-6-methoxypyridine (3v)
2-(1-((4,5-diphenyl-1H-imidazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)-6-ethynylpyridine (3w)
8-methoxy-1-(pyridin-2-yl)-3,4,5,6-tetrahydrobenzo[3,4]cyclohepta[1,2-c]pyrazole (4a)
8-methoxy-1-(6-methylpyridin-2-yl)-3,4,5,6-tetrahydrobenzo[3,4]cyclohepta[1,2-c]pyrazole (4b)
2,6-bis(1-((1H-indol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (5a)
2,6-bis(1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (5b)
tert-butyl \((S)-2-(3-(6-(1-(R)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)-5-methyl-1H-pyrazol-3-yl)pyridin-2-yl)-5-methyl-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate (5c)\)
2,6-bis(8-methoxy-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepin-2-yl)pyridine (5d)
1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-3-(4-(trifluoromethyl)phenyl)-1H-pyrazole (8a)
1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-3-(4-fluorophenyl)-5-phenyl-1H-pyrazole

(8b)
1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-3,5-diphenyl-1H-pyrazole (8c)
1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-3-(4-methoxyphenyl)-5-phenyl-1H-pyrazole (8d)
1-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-3-(thiophen-3-yl)-1H-pyrazole (8e)
2-\(((5\-(4\-methoxyphenyl)-3\-phenyl-1H\-pyrazol-1\-yl)methyl)-2H\-benzo[d][1,2,3]triazole (8f)
1-((4,5-diphenyl-1H-imidazol-1-yl)methyl)-3,5-diphenyl-1H-pyrazole (8g)
1-((4,5-diphenyl-1H-imidazol-1-yl)methyl)-3-(4-methoxyphenyl)-5-phenyl-1H-pyrazole (8h)
2-(5-(6-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-5-phenyl-1H-pyrazol-3-yl)pyridin-2-yl)-1H-1,2,3-triazol-1-yl)-1-phenylethan-1-one (10)