The UVA response of enolic dibenzoylmethane: Beyond the static approach

Marko Kojić¹, Igor Lyskov², Branislav Milovanović¹, Christel M. Marian³ and Mihajlo Etinski*¹

¹Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16 11000 Belgrade, Serbia
²Chemical and Quantum Physics Group, ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
³Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany

*To whom correspondence should be addressed; E-mail: etinski@ffh.bg.ac.rs

Supporting Information
Figure S1: Molar excitation coefficient of $\pi\pi^*$ (black line) and $n\pi^*$ (red line) states simulated by employing the classical (a) and quantum (b) computational protocols with 150 (full line), 100 (dashed line) and 50 (dotted line) points.
Figure S2: Correlation between the $\pi\pi^*$ excitation energies and the $\Delta(OH)$ coordinates sampled in the classical simulation. The Pearson correlation coefficient is 0.141.
Figure S3: Correlation between the $\pi\pi^*$ excitation energies and the $d(CO)$ coordinate sampled in the classical simulation. The $d(CO)$ coordinate is a sum of two C-O bonds. The Pearson correlation coefficient is -0.274.
Figure S4: Correlation between the $\pi\pi^*$ excitation energies and the $d(C10 - C11)$ coordinates sampled in the classical simulation. The Pearson correlation coefficient is -0.068.
Figure S5: Correlation between the $\pi\pi^*$ excitation energies and the C1-C2-C3 angles sampled in the classical simulation. The Pearson correlation coefficient is -0.005.
Figure S6: Correlation between the $\pi\pi^*$ excitation energies and the C11-C10-C1-C2 dihedral angles sampled in the classical simulation. The Pearson correlation coefficient is -0.033.
Figure S7: Correlation between the $\pi\pi^*$ excitation energies and the H-O1-C1-C2 dihedral angles sampled in the classical simulation. The Pearson correlation coefficient is -0.101.