Electronic Supplementary Information (ESI)

Proton transfer fluorescent secondary amines. Synthesis, photophysics, theoretical calculation and preparation of photoactive phosphatidylcholine-based liposomes

Thais Kroetz,^a Marinalva C. dos Santos,^b Roiney Beal,^c Gabriel Modernell Zanotto^c, Fabiano S. Santos,^d Fernando Carlos Giacomelli,^e Paulo F. B. Gonçalves,^c Vânia R. de Lima,^b Alexandre G. Dal-Bó,^d Fabiano S. Rodembusch^{a,*}

^aGrupo de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500. CEP 91501-970 Porto Alegre-RS, Brazil. E-mail: rodembusch@iq.ufrgs.br
^bUniversidade Federal do Rio Grande -FURG, Av. Itália km 8 Campus Carreiros, CEP 96201-900, Rio Grande, RS, Brazil
^cGrupo de Química Teórica. Instituto de Química/UFRGS. Av. Bento Gonçalves 9500. CEP 91501-970. Porto Alegre-RS. Brazil.
^dUniversidade do Extremo Sul Catarinense - UNESC, Av. Universitária 1105, CEP 88806-000, Criciúma, SC, Brazil
^eCentro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André - SP, Brazil.

Summary

¹ H NMR data	 2
¹³ C NMR data	 16
FTIR data	 22
HRMS data	 36
Additional Photophysical data	 42
Additional calculations	 46

Figure ESI1. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **8**.

Figure ESI2. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **9**.

Figure ESI3. ¹H NMR spectrum (300 MHz, CDCI₃) of compound **13**.

Figure ESI4. ¹H NMR spectrum (300 MHz, CDCI₃) of compound **14**.

Figure ESI5. ¹H NMR spectrum (300 MHz, CDCI₃) of compound **15**.

Figure ESI6. ¹H NMR spectrum (300 MHz, CDCI₃) of compound **16**.

Figure ESI7. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **17**.

Figure ESI8. ¹H NMR spectrum (300 MHz, CDCI₃) of compound **18**.

Figure ESI9. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **19**.

Figure ESI10. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **20**.

Figure ESI12. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 22.

Figure ESI13. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 23.

Figure ESI14. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 24.

Figure ESI15. 13 C NMR spectrum (75,4 MHz, CDCl₃) of compound 19.

Figure ESI16. ¹³C NMR spectrum (100.6 MHz, CDCl₃) of compound **20**.

Figure ESI17. ¹³C NMR spectrum (75.4 MHz, CDCl₃) of compound **21**.

Figure ESI18. ¹³C NMR spectrum (100.6 MHz, CDCl₃) of compound 22.

Figure ESI19. ¹³C NMR spectrum (100.6 MHz, CDCl₃) of compound 23.

Figure ESI20. ¹³C NMR spectrum (75.4 MHz, CDCl₃) of compound 24.

FTIR data

Figure ESI21. FTIR spectra of 8.

Figure ESI22. FTIR spectra of 9.

Figure ESI23. FTIR spectra of 13.

Figure ESI24. FTIR spectra of 14.

Figure ESI25. FTIR spectra of 15.

Figure ESI26. FTIR spectra of 16.

Figure ESI27. FTIR spectra of 17.

Figure ESI28. FTIR spectra of 18.

Figure ESI29. FTIR spectra of 19.

Figure ESI30. FTIR spectra of 20.

Figure ESI31. FTIR spectra of 21.

Figure ESI32. FTIR spectra of 22.

Figure ESI33. FTIR spectra of 23.

Figure ESI34. FTIR spectra of 24.

HRMS data

Meas. m/z	Ion Formula	m/z	err [ppm]	mSigma	rdb	e [–] Conf	N-Rule
311.1752	C19H23N2O2	311.1754	0.8	6.6	9.5	even	ok

Figure ESI35. HRMS data of 19.

Meas. m/z	Ion Formula	m/z	err [ppm]	mSigma	rdb	e [–] Conf	N-Rule
327.1521	C19H23N2OS	327.1526	1.3	11.8	9.5	even	ok

Figure ESI36. HRMS data of 20.

Meas. m/z	Ion Formula	m/z	err [ppm]	mSigma	rdb	e [–] Conf	N-Rule
423.3004	C27H39N2O2	423.3006	0.5	1.5	9.5	even	ok

Figure ESI37. HRMS data of 21.

Meas. m/z	Ion Formula	m/z	err [ppm]	mSigma	rdb	e [–] Conf	N-Rule
439.2776	C27H39N2OS	439.2778	0.3	26.5	9.5	even	ok

Figure ESI38. HRMS data of 22.

Meas. m/z	Ion Formula	m/z	err [ppm]	mSigma	rdb	e [–] Conf	N-Rule
507.3942	C33H51N2O2	507.3945	0.5	17.0	9.5	even	ok

Figure ESI39. HRMS data of 23.

Meas. m/z	Ion Formula	m/z	err [ppm]	mSigma	rdb	e [–] Conf	N-Rule
523.3699	C33H51N2OS	523.3717	3.4	63.2	9.5	even	ok

Figure ESI40. HRMS data of 24.

Additional Photophysical data

Figure ESI41. UV-Vis absorption (left) and normalized fluorescence emission (right) spectra of amine **19** (~10⁻⁵ M). (λ_{exc} =328 nm for ethanol and acetonitrile and λ_{exc} =332 nm for toluene). The asterisk indicates the Raman signal.

Figure ESI42. UV-Vis absorption (left) and normalized fluorescence emission (right) spectra of amine **20** (~10⁻⁵ M). (λ_{exc} =327 nm for ethanol, λ_{exc} =350 nm for acetonitrile and λ_{exc} =332 nm for toluene). The asterisk indicates the Raman signal.

Figure ESI43. UV-Vis absorption (left) and normalized fluorescence emission (right) spectra of amine **21** (~10⁻⁵ M). (λ_{exc} =327 nm for ethanol and acetonitrile and λ_{exc} =332 nm for toluene). The asterisk indicates the Raman signal.

Figure ESI44. UV-Vis absorption (left) and normalized fluorescence emission (right) spectra of amine **22** (~10⁻⁵ M). (λ_{exc} =342 nm for ethanol, λ_{exc} =343 nm for acetonitrile and λ_{exc} =348 nm for toluene). The asterisk indicates the Raman signal.

Figure ESI45. UV-Vis absorption (left) and normalized fluorescence emission (right) spectra of amine **22** (~10⁻⁵ M). (λ_{exc} =341 nm for ethanol, λ_{exc} =342 nm for acetonitrile and λ_{exc} =347 nm for toluene). The asterisk indicates the Raman signal.

Figure ESI46. UV-Vis absorption (left) and normalized fluorescence emission (right) spectra of amine **24** (~10⁻⁵ M). (λ_{exc} =342 nm for ethanol and acetonitrile and λ_{exc} =348 nm for toluene). The asterisk indicates the Raman signal.

Figure ESI47. UV-Vis absorption spectra of compound **20** (left) and **23** (right) (~10⁻⁵ M) at different solutions of SDS in Tris/HCI (pH 9.0) and MilliQ Water below (4 mM) and above (12 mM) cmc.

Figure ESI48. Normalized fluorescence emission spectra of compound **20** (left) and **23** (right) (~10⁻⁵ M) at different solutions of SDS in Tris/HCI (pH 9.0) and MilliQ Water below (4 mM) and above (12 mM) cmc.

Additional calculations

Figure ESI49. Geometry of the transition state of the proton transfer of molecule 19.