Electronic supplementary information

Fig. S1 Emission intensities of compound CHBT at 450 (top) and 530 nm (bottom) as functions of the concentrations of BSA (black circles) and pepsin (red circles). [CHBT] = 5 μ M. The dashed curve shows the emission intensity at 530 nm recalculated under the assumption of a 1:1 CHBT/BSA binding stoichiometry, a binding equilibrium constant K_b = 3 x 10⁴ M⁻¹ and an emission intensity 750 x 10³ counts at a 1 μ M CHBT/BSA complex concentration.

Fig. S2 UV spectra of benzothiophene (a) and three simple chromenones in light petroleum (b-d) (from the UV Atlas of Organic Compounds, Verlag Chemie, 1966).

Fig. S3 ¹H-NMR spectra of compound CHBT in deuterated toluene, DMSO and acetonitrile.

Fig. S4 Time evolution of the O (carbonyl)-H distance obtained in the molecular dynamics run performed by initially assigning zero-point vibrational energies to all vibrational modes (condition *a* in the Computational section).

Fig. S5 Semi-log plots of the time-decays of the emission of CHBT in different solvents. Blue dots, scattered excitation pulse; red dots, emission; green line, plot of the fitting curve and of the corresponding residuals. 1 channel $\equiv 27$ ps. $\lambda_{exc} = 340$ nm in all cases. A1, in DMSO, $\lambda_{em} = 430$ nm; A2, in acetonitrile-water 1:2 mixture, $\lambda_{em} = 440$ nm; A3, in the aqueous buffer, $\lambda_{em} = 425$ nm, $\tau_1 = 0.42$ ns (90%), $\tau_2 = 3$ ns (5%), $\tau_3 = 11$ ns (5%). B1, in cyclohexane, $\lambda_{em} = 530$ nm, $\tau_1 = 1.2$ ns (85%), $\tau_2 = 3$ ns (15%); B2, in acetonitrile, $\lambda_{em} = 540$ nm, $\tau_1 = 0.17$ ns (64%), $\tau_2 = 0.75$ ns (32%); B3, with 25 μ M BSA, $\lambda_{em} = 530$ nm, $\tau_1 = 1.15$ ns (12%), $\tau_2 = 3.3$ ns (38%), $\tau_3 = 5.4$ ns (40%), $\tau_4 = 9$ ns (10%). The fitting lifetimes of the decays in A1 and A2 are shorter than the instrumental resolution (0.15 ns).