1 Electronic Supplementary Information (ESI)

2 Tables

Table S1: Reported transmittance of solar radiation through the snowpack in different experiments. Note that the extinction coefficients calculated for each study refer to the wavelength range studied and hence are not directly comparable with each other or with the results from our study, but give only an indication for the rate of extinction in each case.

<table>
<thead>
<tr>
<th>Wavelength Range and device</th>
<th>Extinction Coefficient (cm⁻¹)</th>
<th>Peak Transmittance</th>
<th>Location</th>
<th>Snow Type (grain size)</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadband with a pyrheliometer/thermistors</td>
<td>0.112 fine snow 0.116 coarse snow (0-40 cm depth)</td>
<td>Not applicable</td>
<td>Sierra Nevada, California.</td>
<td>Fine crystal structure</td>
<td>Gerdel (1948)</td>
</tr>
<tr>
<td>420-650 nm (four wavelengths)</td>
<td>0.07-0.35 cm⁻¹ (sensu Mantis 1951)</td>
<td>420 nm - Longer λ attenuated more</td>
<td>Maudheim, Norway</td>
<td>0.3 mm (modelled)</td>
<td>Liljequist (1956) in Bohren & Barkstrom (1974)</td>
</tr>
<tr>
<td>400-730 nm at 50 nm res. spectroradiometer</td>
<td>0.132 at 35 cm depth in fresh snow, 0.023 at 200 cm depth old snow.</td>
<td>500 nm (fresh) 550 nm(old snow)</td>
<td>Franklin Basin Utah USA (2300 m asl)</td>
<td>Seasonal snow from fresh (March) to snow/ice (May)</td>
<td>Richardson & Salisbury (1977)</td>
</tr>
<tr>
<td>400-750 nm at 25nm res. 750-1050 nm 50 nm res. Scanning spectroradiometer</td>
<td>0.115 powder snow at 450nm (0-46 cm depth) 0.177 small crystals (0-16 cm depth)</td>
<td>450-600 nm peak 475 nm</td>
<td>Hoodo and Bachelor Butte, Oregon, USA</td>
<td>Powder snow 13th February, fine snow 15th May.</td>
<td>Curl Jr. et al., (1972)</td>
</tr>
<tr>
<td>400-730 nm 25 nm res. scanning spectroradiometer</td>
<td>0.109 at 450 nm at 69 cm depth</td>
<td>425-600 nm peak 550 nm</td>
<td>Franklin Basin, Utah (alpine 2300 m asl)</td>
<td>Seasonal snow measured on 26th February</td>
<td>Kimball et al., (1973)</td>
</tr>
<tr>
<td>350-900 nm (50-150 nm res.) silicon photodiode spectrometer</td>
<td>0.329 at 350 nm (2-12 cm depth)</td>
<td>450-500 nm (coarse scale)</td>
<td>McMurdo Sound, Antarctica</td>
<td>0.2 mm seasonal snow – removed for measurement</td>
<td>Beaglehole et al. (1998)</td>
</tr>
<tr>
<td>350-1050 nm (quantum sensor)</td>
<td>0.30 at 10 cm depth fresh snow, PAR</td>
<td>400 nm with a minor peak at</td>
<td>Brüggerhalvüya peninsula, Svalbard</td>
<td>Variable grain sizes >0.5mm</td>
<td>Gerland et al. (1999)</td>
</tr>
<tr>
<td>Wavelength Range</td>
<td>Soil or Snow Type</td>
<td>Peak Wavelength</td>
<td>Supplemental Info</td>
<td>Source(s)</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>400-700 nm (FieldSpec FR spectrometer)</td>
<td>0.164 at 14 cm depth old snow, PAR 0.35 at 0-20 cm depth fresh snow 0.17 0-20 cm depth old snow</td>
<td>430 nm</td>
<td>Gerland et al. (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310-400 nm (1 nm resolution) array spectrometer</td>
<td>0.32 (0-7.2 cm depth)</td>
<td>Flat (very small peak 345 nm)</td>
<td>Mars Oasis, Antarctica</td>
<td>Cockell & Cordobá-Jabonero (2004)</td>
<td></td>
</tr>
<tr>
<td>350-1000 nm (3 nm res. scanning spectroradiometer)</td>
<td>Highly variable (40-135 cm)</td>
<td>390 nm</td>
<td>Concordia, Antarctica</td>
<td>Warren et al. (2006)</td>
<td></td>
</tr>
<tr>
<td>400-1000 nm (5 nm res. array spectrometer)</td>
<td>0.23-(2-4 cm) 0.11 (7-12 cm) at 400 nm</td>
<td>450-500 nm peak (Wavelength dependent - longer attenuated faster)</td>
<td>Semi-controlled conditions – Hanover, New Hampshire</td>
<td>Perovich (2007)</td>
<td></td>
</tr>
<tr>
<td>320-600 nm (1nm res. Six-probe array spectrometer)</td>
<td>Various 0.105 at 30 cm Table 2 of France et al., (2011)</td>
<td>440 nm peak</td>
<td>Concordia, Antarctica</td>
<td>Various (0.3-1.0 mm)</td>
<td></td>
</tr>
</tbody>
</table>

6 Res. = Resolution

7 Conversion from gm cal m⁻² to W m⁻² (1 cal/ = 41867.28072 W m⁻²)

8
Table S2: Average spectral photon irradiance (μmol m$^{-2}$ s$^{-1}$) given for spectral integrals, measured at 30 cm above the snow, at the snow surface (0 cm), and along a transect beneath the snow surface down to 24 cm depth (27-01-2019). Ratios of certain spectral integrals are given: the UV-B:PAR ratio and the UV-B:UV-A ratio report UV-B × 1000 to give readable results. Each wavelength range and the R:FR ratio are defined by Sellaro et al. (2010). The extinction coefficients (exp) of the fitted function (equation 1) are given to two alternative depths.

| Depth (cm) | PAR (PPFD) | UV-B | UV<350 (nm) | UV>350 (nm) | UV-A | Blue | Green | Red | Far-red | Infra-red (<900nm) | UVB:UVA (>1000) | UVB:PAR (>1000) | UVA:PAR ratio | R:FR ratio | B:G ratio | B:R ratio |
|-----------|------------|------|-------------|-------------|------|------|-------|-----|---------|------------------|----------------|----------------|----------------|-------------|-----------|----------|----------|
| 30 above | 373.3 | 0.061| 5.98 | 17.87 | 23.79| 71.43| 88.28 | 91.48| 82.34 | 234.2 | 2.58 | 0.165 | 0.064 | 1.11 | 0.81 | 0.78 |
| 0 | 383.5 | 0.102| 6.53 | 19.18 | 25.61| 75.38| 91.07 | 92.00| 82.34 | 235.6 | 3.98 | 0.266 | 0.067 | 1.12 | 0.83 | 0.82 |
| 1 | 129.9 | 0.038| 3.29 | 9.06 | 12.31| 29.47| 31.15 | 31.15| 27.80 | 70.32 | 3.01 | 0.298 | 0.096 | 1.15 | 0.95 | 1.09 |
| 3 | 82.00 | 0.027| 2.31 | 6.27 | 8.55 | 19.47| 19.70 | 16.84| 14.65 | 42.49 | 3.21 | 0.335 | 0.104 | 1.15 | 0.99 | 1.16 |
| 5 | 55.51 | 0.019| 1.53 | 4.21 | 5.73 | 13.20| 13.29 | 11.35| 9.74 | 26.91 | 3.24 | 0.342 | 0.104 | 1.17 | 0.99 | 1.19 |
| 7 | 43.73 | 0.013| 1.06 | 2.99 | 4.02 | 10.00| 10.62 | 9.19 | 7.88 | 19.70 | 3.26 | 0.300 | 0.092 | 1.17 | 0.94 | 1.09 |
| 11 | 13.09 | 0.003| 0.24 | 0.79 | 1.02 | 3.03 | 3.39 | 2.56 | 1.64 | 1.83 | 2.74 | 0.214 | 0.078 | 1.57 | 0.90 | 1.18 |
| 14 | 10.31 | 0.002| 0.19 | 0.63 | 0.82 | 2.47 | 2.75 | 1.90 | 1.06 | 0.92 | 2.97 | 0.235 | 0.079 | 1.80 | 0.89 | 1.30 |
| 18 | 9.67 | 0.002| 0.16 | 0.56 | 0.72 | 2.25 | 2.57 | 1.83 | 1.02 | 0.89 | 2.70 | 0.201 | 0.074 | 1.78 | 0.87 | 1.23 |
| 20 | 5.69 | 0.001| 0.09 | 0.32 | 0.41 | 1.38 | 1.59 | 0.97 | 0.42 | 0.21 | 2.95 | 0.213 | 0.073 | 2.31 | 0.86 | 1.41 |
| 22 | 3.04 | 0.000| 0.05 | 0.18 | 0.23 | 0.78 | 0.88 | 0.46 | 0.17 | 0.06 | 1.01 | 0.077 | 0.077 | 2.76 | 0.89 | 1.68 |
| 24 | 1.16 | 0.000| 0.01 | 0.07 | 0.07 | 0.29 | 0.35 | 0.17 | 0.05 | 0.01 | 0.82 | 0.053 | 0.064 | 3.40 | 0.84 | 1.69 |

Empirical Extinction Coefficients (μmol m$^{-2}$ s$^{-1}$ cm$^{-1}$; 0-5-cm depth)

<table>
<thead>
<tr>
<th>Exp</th>
<th>-0.350</th>
<th>-0.302</th>
<th>-0.279</th>
<th>-0.276</th>
<th>-0.317</th>
<th>-0.347</th>
<th>-0.378</th>
<th>-0.385</th>
<th>-0.392</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>0.836</td>
<td>0.82</td>
<td>0.900</td>
<td>0.894</td>
<td>0.855</td>
<td>0.837</td>
<td>0.825</td>
<td>0.825</td>
<td>0.840</td>
</tr>
</tbody>
</table>

Empirical Extinction Coefficients (μmol m$^{-2}$ s$^{-1}$ cm$^{-1}$; 0-20-cm depth)

<table>
<thead>
<tr>
<th>-Exp</th>
<th>-0.194</th>
<th>-0.211</th>
<th>-0.193</th>
<th>-0.192</th>
<th>-0.191</th>
<th>-0.217</th>
<th>-0.259</th>
<th>-0.364</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>0.94</td>
<td>0.96</td>
<td>0.95</td>
<td>0.96</td>
<td>0.94</td>
<td>0.93</td>
<td>0.95</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Figures

Fig. S1. Photograph of (A) the diffuser covered by 1-cm snow and (B) the measuring set-up in the field prior to measurements through the snow pack (note that for actual measurements just the diffuser – and attached optical fibre - were inserted into the snow)
Fig. S2. Comparison of measured spectral irradiance at 30-cm above the snow and spectral irradiance modelled using libradtran (Emde et al. 2016) following Brelsford (2016) for 28-02-2018. Solar azimuth 203.05°, solar elevation 19.83°, and cosine of zenith angle 0.3392°.
Fig. S3: Detail from Fig. 2 plotted on a \(\log_{10} \) axis for the UV-region of the spectrum (305 nm – 400 nm are plotted).
Fig. S4: Plots of the relationships of spectral integrals with snow depth on dates (A.) 2018-02-28 and (B.) 2019-01-27. Photosynthetically Active Radiation (PAR: 400-700 nm) is plotted on the primary axis, and unweighted UV-A (315-400 nm) and UV-B (280-315 nm) radiation on the secondary axis. At very low irradiances readings are unreliable so the UV-B line is fitted only to 12-cm depth. (C.) PAR on 2018-02-28 and (D.) 2019-01-27 broken down into blue (420-490 nm), green (500-570 nm) and red (620-680 nm), and far-red (700-750 nm) regions, plotted and with fitted lines (equation 1) in their respective colours (defined according to Sellaro et al., 2010) and exp in units (μmol m$^{-2}$ s$^{-1}$).
Fig. S5: Plots of the change ratios of spectral integrals with snow depth on each of the measurement dates. (A.) Photon ratio of unweighted UV-A radiation to PAR. (B.) Photon ratio of blue (420-490 nm) to green (500-570 nm) irradiance. (C.) The UV-B-to-UV-A photon ratio.
Fig. S6: Hemispherical photograph taken at the location of the measurements of the snowpack. South is upper-most on the photo. The nearest vegetation was a copse of birch c 50 m to the north, otherwise no building or vegetation were within 100 m.
Reference List ESM

