Electronic Supplementary Information

Antipyrine based fluorescence "turn-on" dual sensor for Zn²⁺ and Al³⁺ and its' selective "turn-off" fluorescence sensing towards 2,4,6-trinitrophenol (TNP) in aggregated state

Sudipto Dey, Ashim Maity, Milan Shyamal, Debasish Das, Samir Maity, Prabhat kumar Giri, Naren Mudi, Shashanka Shekhar Samanta, Paresh Hazra and Ajay Misra*

Department of Chemistry, Vidyasagar University, Midnapore-721102, W.B., India

Corresponding Author:

E-mail: ajay@mail.vidyasagar.ac.in; Tel.: +91 8967986988; Fax: +91 3222 275329

Fig. S1: Mass spectrum of DFCAP in methanol.

Fig. S2: ¹H NMR spectrum of DFCAP in CDCl₃.

Fig. S3: FT-IR spectrum of DFCAP showing sharp peak at 1653 cm-1 for C=N bond.

Fig. S4: NMR spectral changes of DFCAP in DMSO-d₆ titrated with 0.5 equiv. and 1.0 equiv. of Al^{3+} in DMSO-d₆.

Fig. S5: NMR spectral changes of DFCAP in DMSO-d₆ titrated with 0.5 equiv. and 1.0 equiv. of Zn^{2+} in DMSO-d₆.

Fig. S6: Absorption spectra of DFCAP (40 μ M) in the presence of different metal ions (100 μ M).

Fig. S7: Fluorescence intensity of DFCAP (40 μ M) in the presence of a mixture of metal ions, including Zn²⁺ and Al³⁺ in methanol at room temperature (excitation: 390 nm).

Fig. S8: Solid state emission of DFCAP.

Fig. S9: (a) Calculation of the detection limit (LOD) of DFCAP for Zn^{2+} and (b) LOD of DFCAP for Al^{3+} .

(The detection limit DL of DFCAP for Zn^{2+} and Al^{3+} was determined from 3σ method by following equation: DL = K* Sb1/S. Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve obtained from Linear dynamic plot of F.I. *vs* [Zn²⁺ or Al³⁺])

(The detection limit DL of DFCAP for Zn^{2+} and Al^{3+} was determined from 3σ method by following equation: DL = K* Sb1/S. Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the To obtain the slope, the fluorescence emission intensity at 538 nm was plotted against the concentration of TNP.)

Samples	Coi	ncentration o	of Al ⁺³	Concentration of Zn ⁺²			
	Spiked (µM)	Found (µM)	Actual Conc. Of Al ³⁺ in sample water (ppb)	Spiked (µM)	Found (µM)	Actual Conc. Of Zn ²⁺ in sample water (ppb)	
Sample - 1	20	25	135	20	22	111	
Sample - 2	20	26	173	20	24	307	
Sample - 3	20	27	181	20	26	418	

 Table S1: Real samples study

Sl.	Probe	No. of	Excitation/		DFT	AIE	Nitro Aromati	Ref.
190.		succession	Emission (mm)	(Al^{2+})	study	erty	c sensing	
1	C C C C NH HO HO	2	398/ 498 (Al ³⁺), 486 (Zn ²⁺)	0.92 nM, 3.1 nM	yes	na	na	1
2		1	355/ 418 (Al ³⁺), 445 (Zn ²⁺)	1.34 μM, 1.59 μM	na	na	na	2
3		1	370/ 432 (Al ³⁺), 446 (Zn ²⁺)	0.648 μM, 1.96 μM	na	na	na	3
4		1	420/ 470 (Al ³⁺), 483 (Zn ²⁺)	5.86 μM, 1.81 μM	yes	na	na	4
5		1	372/ 512 (Al ³⁺), 556 (Zn ²⁺)	83.10 nm, 0.33 μM	na	na	na	5
6		5	305, 315 (Al ³⁺ , Zn ²⁺) / 450 (Al ³⁺), 489 (Zn ²⁺)	17.3 μM, 0.636 nM	yes	na	na	6
7	HOLOH	4	357,405 (Al ³⁺ , Zn ²⁺) / 427 (Al ³⁺), 496 (Zn ²⁺)	3.7 μM, 3.86 μM	na	na	na	7
8		2	390/ 480 (Al ³⁺), 508 (Zn ²⁺)	30.64 nM, 21.22 nM	yes	yes	yes	Present work

 Table S2: Comparison study

References:

1. R. Alam, T. Mistri, R. Bhowmick, A. Katarkar, K. Chaudhuri, M. Ali, RSC Adv., 2016, 6, 1268-1278.

2. Y. S. Kim, G. J. Park, J. J. Lee, S. Y. Lee, S. Y. Lee, C. Kim, RSC Adv., 2015, 5, 11229-11239.

3. S. Goswami, S. Paul, A. Manna, RSC Adv., 2013, 3, 25079-25085.

4. W-H. Ding, W. Cao, X-J. Zheng, W-J. Ding, J-P. Qiao, L-P. Jin, Dalton Trans., 2014, 43, 6429-6435.

5. Y. Fu, Y. Tu, C. Fan, C. Zheng, G. Liu, S. Pu, New J. Chem., 2016, 40, 8579-8586.

 J. Sun, Z. Liu, Y. Wang, S. Xiao, M. Pei, X. Zhao, G. Zhang, RSC Adv., 2015, 5, 100873-100878.

7. J.-c. Qin, L. Fan, B-d. Wang, Z-y. Yang, T-r. Li, Anal. Methods, 2015, 7, 716-722.