Supporting information

Synthesis of the fused heterocyclic systems via Mallory photoreaction of arylthienoethenes

Natalya V. Dyachenko, Andrey V. Khoroshutin, Yulia A. Sotnikova, Valentina A.

Karnoukhova, Alla A. Bobylyova, Alexander V. Anisimov, Yurii V. Fedorov, Olga A. Fedorova

Supporting information	1
1. Synthesis of the starting stilbenes	
2. NMR spectra	
2.1. Starting stilbenes	
2.2. Photocyclization products	
4. X-ray data	
References	

1. Synthesis of the starting stilbenes

3-[(E)-2-(4-methoxyphenyl)vinyl]thiophene 2a [1], 2-[(E)-2-(4-methoxyphenyl)vinyl]thiophene 1a [1, 2], 3-[(E)-2-(3,5-dimethoxyphenyl)vinyl]thiophene 2b [3], 2-[(E)-2-(3,4-dimethoxyphenyl)vinyl]thiophene 1c [4, 5], 2-[(E)-2-(3,4,5-trimethoxyphenyl)vinyl]thiophene 1e [6], are reported in the literature and were synthesized according to Horner-Wadsworth-Emmons method according to general procedure below [7].

Sodium hydride (690 mg, 17.3 mmol) (60% dispersion in paraffin) washed with petroleum ether was dispersed in 70 ml of dimethoxyethane at 0 $^{\circ}$ C. Then 1 g (4.3 mmol) of diethyl 2- or 3-thienylphosphonate was added and the reaction was stirred for 15 min. Afterwards, 4.3 mmol of an aldehyde in 10 ml of DME was slowly added to the reaction mixture. The mixture is stirred at room temperature for 3 hr. Then the reaction is quenched by addition in small portions to 100 ml of cold (0-5 $^{\circ}$ C) water. The resulting precipitate was filtered and recrystallized from methanol.

2. NMR spectra

2.1. Starting stilbenes

Fig. S1. 1 H (a) and 13 C (b) NMR spectra of 1d.

Fig. S2. ¹H NMR spectrum of 1f.

Fig. S3. 1 H (a) and 13 C (b) NMR spectra of 1g.

Fig. S4. 1 H (a) and 13 C (b) NMR spectra of 1h.

Fig. S5. 1 H (a) and 13 C (b) NMR spectra of 2c.

Fig. S6. 1 H (a) and 13 C (b) NMR spectra of 2d.

Fig. S7. 1 H (a) and 13 C (b) NMR spectra of 2e.

Fig. S8. (a) ¹H NMR spectra of 2f.

Fig. S9. 1 H (a) and 13 C (b) NMR spectra of 2g.

2.2. Photocyclization products

Fig. S10. 1 H (a) and 13 C (b) NMR spectra of 3a.

Fig. S11. ¹H (a) and ${}^{13}C$ (b) NMR spectra of 3e.

Fig. S12. ¹H and ¹³C NMR spectra of 3d'.

Fig. S13. 1 H (a) and 13 C (b) NMR spectra of 3c".

Fig. S14. ¹H (a) and ¹³C (b) NMR spectra of 3c'.

Fig. S15. 1 H (a) and 13 C (b) NMR spectra of 3f.

HETCOR ¹H – ¹³C

Fig. S17. 1 H (a) and 13 C (b) NMR spectra of 3g.

Fig. S18. 1 H (a) and 13 C (b) NMR spectra of 3h.

Fig. S19. 1 H (a) and 13 C (b) NMR spectra of 4a.

Fig. S21. 1 H (a) and 13 C (b) NMR spectra of 4c.

Fig. S22. 1 H (a) and 13 C (b) NMR spectra of 4d.

Fig. S24. 1 H (a) and 13 C (b) NMR spectra of 4f.

Fig. S25. 1 H (a) and 13 C (b) NMR spectra of 4g.

Fig. S26. 1 H (a) and 13 C (b) NMR spectra of 5.

Fig. S27. 1 H (a) and 13 C (b) NMR spectra of 6.

3. UV-Vis and fluorescence of heterostilbenes and their photoproducts

Fig S28. Variation of UV-Vis absorption spectra of 0.05 mM 3-substituted thiophene 1a in cyclohexane with time on irradiation by full light of high pressure Hg-lamp (120W): 1 spectrum -0 sec., 2 - 5sec. irradiation, spectra from 3 to 25 were recorded with irradiation interval of 30 seconds between adjacent spectra.

Fig S29. Absorption (solid line) and fluorescence (dotted line) spectra of 1a, $\lambda_{ex} = 320$ nm) in MeCN, (c = 5.0·10⁻⁵ M)

Fig S30. Absorption (solid line) and fluorescence (dotted line) spectra of **2c** ($\lambda_{ex} = 320$ nm) in MeCN, (c= 5,0.10⁻⁵ M)

Fig S31. Absorption (solid line) and fluorescence (dotted line) spectra of 2d ($\lambda_{ex} = 320$ nm) in MeCN (c = 5,0.10⁻⁵ M)

Fig S32. Absorption (sloid line) and fluorescence (dotted line) spectra of 1e ($\lambda_{ex} = 320$ nm) in MeCN. (c = 5,0.10⁻⁵ M)

Fig S33. Absorption (solid line) and fluorescence (dotted line) spectra of **1g** ($\lambda_{ex} = 320$ nm) in MeCN (c = 5,0.10⁻⁵ M)

Fig S34. Absorption (black), fluorescence (green, $\lambda_{ex} = 300$ nm) and fluorescence excitation ($\lambda_{em} = 365$ nm) spectra of **3e** in MeCN (c = 5,0×10⁻⁵ M).

Fig S35. Absorption (black), fluorescence (green, $\lambda_{ex} = 258$ nm,) and fluorescence excitation spectra ($\lambda_{em} = 370$ nm) of 4d in MeCN (c = 5,0×10⁻⁵ M)

Fig S36. Absorption (black), fluorescence (green) ($\lambda_{ex} = 307 \text{ nm}, c = 3.0 \times 10^{-4} \text{ M}$) in MeCN, $c = 3.0 \times 10^{-4} \text{ M}$) and fluorescence excitation spectra (red, $c = 5.0 \times 10^{-4} \text{ M}$, CH3CN) of **3d'**

Fig S37. Absorption (black), fluorescence (green, $\lambda_{ex} = 300$ nm, $c = 3.0 \times 10^{-4}$ M, CH₃CN) and fluorescence excitation spectra (red, $\lambda_{em} = 360$ nm, $c = 5.0 \times 10^{-5}$ M, CH₃CN) of **3f**.

Fig S38. Absorption (black), fluorescence (green, $\lambda_{ex} = 300$ nm, $c = 3.0 \times 10^{-4}$ M in CH₃CN) and fluorescence excitation (red, $\lambda_{em} = 360$ nm, $c = 5.0 \times 10^{-5}$ M in CH₃CN) spectra of **3a**

Fig S39. Absorption (black), fluorescence (green, $\lambda_{ex} = 300$ nm) and fluorescence excitation $\lambda_{em} = 370$ nm) spectra of 4a in MeCN c = 5.0×10^{-5} M

Fig S40. Absorption (black), fluorescence (green, $\lambda_{ex} = 311$ nm, $c = 5,0 \cdot 10^{-5}$ M, MeCN) and fluorescence excitation (red, $c = 5,0 \times 10^{-5}$ M) spectra of **3c''**.

Fig S41. Absorption (black), fluorescence (green, $\lambda_{ex} = 300$ nm, $c = 3.0 \times 10^{-4}$ M, CH₃CN) and fluorecsence excitation ($\lambda_{em} = 360$ nm, $c = 5.0 \times 10^{-5}$ M, CH₃CN) spectra of **3c'**

Fig S42. Absorption (black) and fluorescence (green, $\lambda_{ex} = 300$ nm, $c = 5.0 \times 10^{-5}$ M, CH₃CN) and fluorescence excitation spectra of **4e'** ($\lambda_{em} = 370$ nm) in MeCN ($c = 5.0 \times 10^{-5}$ M)

Fig S43. Absorption (black), fluorescence (green, $\lambda_{ex} = 320$ nm, $c = 1.5 \times 10^{-4}$ M, MeCN) and fluorescence excitation spectra ($\lambda_{em} = 350$ nm, $c = 5.0 \times 10^{-5}$ M, MeCN) of 3g.

Figure S44. X-ray structures of 1a and 1d

	1a	1d	3a	3c"	3g	4a	4b	4d	4f'
CCDC	1903024	1903031	1903023	1903029	1903026	1903027	1903030	1903025	1903028
Empirical formula	C ₁₃ H ₁₂ OS	$C_{14}H_{14}O_2S$	C ₁₃ H ₁₀ OS	$C_{14}H_{12}O_2S$	$C_{15}H_{11}N_3S$	$C_{13}H_{10}OS$	$C_{14}H_{12}O_2S$	$C_{15}H_{14}O_3S$	$C_{14}H_{12}O_2S$
Formula weight	216.29	246.31	214.27	244.30	265.33	214.27	244.30	274.32	244.30
T (K)	120	120	120	120	120	120	120	120	120
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P21/n	P21/n	P212121	Pbca	P21/c	P21/c	P2 ₁ /n	P21/c	P2 ₁ /n
Z / Z'	4 / 1	4 / 1	4 / 1	8 / 1	8 / 2	4 / 1	4 / 1	4 / 1	8 / 2
<i>a</i> , Å	5.9726(3)	15.2689(10)	6.0379(3)	10.3332(6)	6.9254(5)	14.7585(13)	5.1488(12)	8.7010(6)	11.3769(10)

Table S1. Crystal data and structure refinement for 1a, 1d, 3a, 3h", 3g, 4a, 4b, 4d, 4f'.

<i>b</i> , Å	7.5101(4)	5.1860(3)	10.4847(5)	14.5631(9)	15.9044(11)	5.6771(5)	10.707(2)	7.6258(5)	10.1584(9)
<i>c</i> , Å	24.2373(13)	15.3921(10)	16.1404(8)	15.1782(9)	23.1610(16)	12.3197(11)	20.672(5)	20.3847(14)	20.2218(17)
α, °	90	90	90	90	90	90	90	90	90
β, °	92.8230(10)	96.0580(10)	90	90	92.3480(10)	97.4501(18)	91.856(4)	97.9390(10)	91.6730(19)
γ, °	90	90	90	90	90	90	90	90	90
<i>V</i> , Å ³	1085.84(10)	1212.01(13)	1021.78(9)	2284.1(2)	2548.9(3)	1023.50(16)	1139.0(5)	1339.60(16)	2336.1(4)
$d_{ m calc} ({ m g} { m cm}^{-1})$	1.323	1.350	1.393	1.421	1.383	1.391	1.425	1.360	1.389
μ , cm ⁻¹	2.66	2.53	2.82	2.68	2.42	2.81	2.69	2.42	2.62
F(000)	456	520	448	1024	1104	448	512	576	1024
2θ _{max} , °	61.4	61.3	61.4	61.1	61.3	61.3	61.2	61.0	61.3
Refls collected	18771	15504	17850	29007	33697	13447	14960	17797	31554
	3364	3756	3162	3510	7848	3146	3476	4069	7191
	[0.0241]	[0.0328]	[0.0238]	[0.0327]	[0.0322]	[0.0295]	[0.1554]	[0.0309]	[0.0446]
Observed reflections $[I > 2\sigma(I)]$	2917	2998	2964	3018	6416	2685	1799	3191	5544
Parameters	274	156	137	156	343	137	156	203	311
<i>R</i> 1	0.0324	0.0376	0.0307	0.0322	0.0389	0.0351	0.0784	0.0381	0.0433
wR2	0.0880	0.1052	0.0793	0.0956	0.1064	0.0941	0.1882	0.1092	0.1183
GOF	1.024	1.014	1.021	1.024	1.008	1.019	1.025	1.016	1.023
Residual density, $\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$ (e A ⁻³)	0.485/-0.253	0.445/-0.237	0.366/-0.129	0.455/-0.272	0.391/-0.278	0.480/-0.214	0.811/-0.678	0.377/-0.225	0.406/-0.299

References

- [1] Qu J, Cao C-T, Cao C. J. Phys. Org. Chem. 2018; 31: e3799.
- [2] Kumar N, Paramasivam M, Kumar J, Gusain A, Hota PK. J. Fluoresc. 2018; 28: 1207.
- [3] Kabir MS, Engelbrecht K, Polanowski R, Krueger SM, Ignasiak R, Rott M, Schwan WR, Stemper ME, Reed KD, Sherman D, Cook JM, Monte A. Bioorg. Med. Chem. Lett. 2008; 18: 5745.
- [4] Bazin M-A, Kihel LE, Lancelot J-C, Rault S. Tetrahedron Lett. 2007; 48: 4347.
- [5] Moreno I, Tellitu I, Domínguez E, SanMartín R. Eur. J. Org. Chem. 2002; 2126.
- [6] Nguyen TTB, Lomberget T, Tran NC, Barret R. Tetrahedron. 2013; 69: 2336.
- [7] Wadsworth WS. Org. React. 2005.