Supplementary data

<table>
<thead>
<tr>
<th>Probe</th>
<th>Water samples test</th>
<th>Cell imaging</th>
<th>Detection limit/M</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>1.4×10⁻⁵</td>
<td>Optical Materials, 2018, [57]</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>6.2×10⁻⁶</td>
<td>Dyes and Pigments, 2017, [58]</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>No</td>
<td>8.7×10⁻⁷</td>
<td>J. Photoch. Photobio. A, 2015,[59]</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>7.6×10⁻⁷</td>
<td>Dyes and Pigments, 2017, [26]</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>6.1×10⁻⁷</td>
<td>Sens. Actuators B: Chem, 2018, [60]</td>
</tr>
<tr>
<td>This work</td>
<td>Yes</td>
<td>Yes</td>
<td>1.74×10⁻⁷</td>
<td></td>
</tr>
</tbody>
</table>

Table S1 Comparison with other reported Ag⁺ fluorescence probes.
Supplementary data

Fig. S1. Absorbance spectra of probe PPN (10 μM) in the absence and presence of different metal ions (50 μM) in DMF/PBS buffer (v/v = 5/5, pH = 7.4).

Fig. S2. (A) Absorbance (at 360 nm) of probe PPN (10 μM) in the absence and presence of Cu$^{2+}$ (50 μM) in DMF/PBS solution (v/v = 5/5, pH = 7.4) with different pH values. (B) Absorbance (at 360 nm) of probe PPN (10 μM) in the presence of Cu$^{2+}$ (50 μM) in DMF/PBS solution (v/v = 5/5, pH = 7.4) with different response time.

Fig. S3. Fluorescence intensity ratios (F_{515}/F_{432}) of probe PPN (10 μM) in the presence of Ag$^+$ (100 μM) in DMF/PBS solution (v/v = 5/5, pH = 7.4) with different response time. $\lambda_{ex} = 340$ nm.

Fig. S4. Fluorescence spectra of probe PPN (10 μM) in the absence and presence of different metal ions (100 μM) in DMF/PBS buffer (v/v = 5/5, pH = 7.4).

Fig. S5. The fluorescence intensity of probe PPN (10 μM) with Ag$^+$ in DMF/PBS buffer (v/v = 5/5, pH = 7.4) at different time, $\lambda_{ex} = 340$ nm.

Fig. S6. (A) Job's plot for the determination of the stoichiometry of PPN and Ag$^+$. (B) Job's plot for the determination of the stoichiometry of PPN and Cu$^{2+}$.

Fig. S7. 1H NMR spectra of PPN (A) and in the presence of Ag$^+$ (B) and Cu$^{2+}$.

Fig. S8. HRMS-ESI spectra of PPN–Ag$^+$ (A) and PPN–Cu$^{2+}$ (B).

Fig. S9. Molecular orbitals (LUMO and HOMO) of compounds PPN and PPN–Ag$^+$.

Fig. S10. The linear relationship between the fluorescence intensity ratios (F_{515}/F_{432}) and Ag$^+$ concentration (1, 5, 10, 15, 20, 30 μM) in (A) lake water and (B) tap water and (C) distilled water samples. (D) Fluorescence intensity of probe PPN treatment with Ag$^+$ (1, 5, 10, 15, 20, 30 μM) in three water samples.
Fig. S1. MTT assay of Hela cells was incubated with 0.1, 1, 10, 20 and 50 μM probe PPN for 48 h.
Fig. S2

Fig. S3
Fig. S4

Fig. S5
Fig. S6
Fig. S10

Fig. S11