Supporting Information

Identification of β scission products from free radical polymerizations of butyl acrylate at high temperature

Marco Drache, Maria Stehle, Jonas Mätzig, Katrin Brandl, Marcel Jungbluth, Jan C. Namyslo, Andreas Schmidt, Sabine Beuermann

Figure S1: Molar mass distributions for polymer samples obtained from thermally initiated batch BA polymerizations at 120°C. #1 and #2 refer to the samples in Table 1.

- Figure S2: Molar mass distributions for polymer samples obtained from thermally initiated batch BA polymerizations at 140°C. #6 and #7 refer to the samples in Table 1.
- Table S1:Analytical SEC results for the fractions obtained after preparative SEC of a polymer
obtained via semi-batch polymerization at 130°C.

fraction	content	<i>M</i> _n / g⋅mol ⁻¹	<i>M</i> _w / g·mol ⁻¹	D
1	0.161	9056	10280	1.14
2	0.372	5733	6679	1.17
3	0.200	3541	4348	1.23
4	0.128	2178	2940	1.35
5	0.066	1352	2118	1.57
6	0.034	876	1600	1.83
7	0.039	588	1192	2.02
6+7	0.073	757	1443	1.91
all		2148	4633	2.16

Figure S3: ESI-MS data of β scission products: semi-batch polymerization at 130°C after 1 h in xylene (S₁: xylene end group).

MM _n =CH2	+	Na ⁺
----------------------	---	-----------------

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	279.1567	279.1567	3.0E-05	591672
3	407.2404	407.2404	0.0E+00	558841
4	535.3240	535.3241	-1.3E-04	657030
5	663.4076	663.4079	-2.6E-04	390392
6	791.4911	791.4916	-4.9E-04	294774
7	919.5746	919.5753	-7.2E-04	242361
8	1047.6582	1047.6590	-8.5E-04	210042
9	1175.7415	1175.7428	-1.3E-03	127243
10	1303.8244	1303.8265	-2.1E-03	61132
11	1431.9065	1431.9102	-3.7E-03	24812
12	1559.9904	1559.9940	-3.6E-03	8650

MM_n^H + Na⁺

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	267.1568	267.1567	1.3E-04	709
3	395.2403	395.2404	-1.0E-04	16453
4	523.3239	523.3241	-2.3E-04	46569
5	651.4075	651.4079	-3.6E-04	34533
6	779.491	779.4916	-5.9E-04	40819
7	907.5744	907.5753	-9.2E-04	40246
8	1035.6579	1035.6590	-1.1E-03	42173
9	1163.7414	1163.7428	-1.4E-03	28933
10	1291.8244	1291.8265	-2.1E-03	18688
11	1419.9065	1419.9102	-3.7E-03	9589
12	1547.9903	1547.9940	-3.7E-03	4098
13	1676.0735	1676.0777	-4.2E-03	1496

 $S_1\text{-}MM_n^{=CH2}\text{ + }Na^+$

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	397.2350	397.2349	1.0E-04	27019
3	525.3190	525.3186	3.7E-04	40510
4	653.4027	653.4024	3.4E-04	43093
5	781.4867	781.4861	6.1E-04	40455
6	909.5707	909.5698	8.8E-04	41588
7	1037.6552	1037.6535	1.7E-03	43402
8	1165.7388	1165.7373	1.5E-03	34815
9	1293.8227	1293.8210	1.7E-03	22421
10	1421.9053	1421.9047	5.6E-04	12791
11	1549.9901	1549.9885	1.6E-03	6255
12	1678.0731	1678.0722	9.0E-04	2903

n	<i>m/z</i> / Da	<i>m/z</i> / Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
2	385.2348	385.2349	-1.0E-04	46644
3	513.3185	513.3186	-1.3E-04	59076
4	641.4019	641.4024	-4.6E-04	49278
5	769.4855	769.4861	-5.9E-04	44869
6	897.5689	897.5698	-9.2E-04	44715
7	1025.6524	1025.6535	-1.1E-03	42558
8	1153.7357	1153.7373	-1.6E-03	30332
9	1281.8184	1281.8210	-2.6E-03	18299
10	1409.9005	1409.9047	-4.2E-03	9131
11	1537.9843	1537.9885	-4.2E-03	3997
12	1666.0663	1666.0722	-5.9E-03	1433

Figure S4: ESI-MS data of β scission products: batch polymerization at 130°C with $c_{BA,0} = 2.06$ mol·L⁻¹ in dioxane (S₂: dioxane end group).

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	279.157	279.1567	3.3E-04	391271
3	407.2408	407.2404	4.0E-04	462495
4	535.3245	535.3241	3.7E-04	488422
5	663.4081	663.4079	2.4E-04	345787
6	791.4919	791.4916	3.1E-04	253310
7	919.5758	919.5753	4.8E-04	215149
8	1047.6595	1047.6590	4.5E-04	165288
9	1175.7431	1175.7428	3.2E-04	108448
10	1303.8263	1303.8265	-2.1E-04	55494
11	1431.9104	1431.9102	1.6E-04	23667
12	1559.9948	1559.9940	8.3E-04	9138
		-	-	-

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	267.1565	267.1567	-1.7E-04	558
3	395.2403	395.2404	-1.0E-04	8036
4	523.3239	523.3241	-2.3E-04	17225
5	651.4077	651.4079	-1.6E-04	17600
6	779.4912	779.4916	-3.9E-04	19433
7	907.5745	907.5753	-8.2E-04	18614
8	1035.6580	1035.6590	-1.0E-03	18023
9	1163.7412	1163.7428	-1.6E-03	13366
10	1291.8245	1291.8265	-2.0E-03	8657
11	1419.9076	1419.9102	-2.6E-03	4851
12	1547.9926	1547.9940	-1.4E-03	2111

1				
n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	379.2093	379.2091	2.0E-04	9398
3	507.2931	507.2928	2.7E-04	17464
4	635.3766	635.3766	4.1E-05	16127
5	763.4604	763.4603	1.1E-04	16967
6	891.5442	891.5440	1.8E-04	16107
7	1019.6283	1019.6277	5.5E-04	15392
8	1147.7116	1147.7115	1.2E-04	11410
9	1275.7945	1275.7952	-7.1E-04	7458
10	1403.8780	1403.8789	-9.4E-04	3915
11	1531.9630	1531.9627	3.3E-04	1749

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	367.2094	367.2091	3.0E-04	5683
3	495.2931	495.2928	2.7E-04	7904
4	623.3766	623.3766	4.1E-05	7497
5	751.4604	751.4603	1.1E-04	6864
6	879.5440	879.5440	-1.9E-05	6774
7	1007.6276	1007.6277	-1.5E-04	6294
8	1135.7112	1135.7115	-2.8E-04	4913
9	1263.7942	1263.7952	-1.0E-03	3273
10	1391.8779	1391.8789	-1.0E-03	1838

Figure S5: ESI-MS data of β scission products: batch polymerization at 120°C with $c_{BA,0}$ = 2.92 mol·L⁻¹ in dioxane (S₂: dioxane end group).

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	279.1562	279.1567	-4.7E-04	192560
3	407.2398	407.2404	-6.0E-04	99913
4	535.3233	535.3241	-8.3E-04	151569
5	663.4066	663.4079	-1.3E-03	53809
6	791.4902	791.4916	-1.4E-03	54280
7	919.5739	919.5753	-1.4E-03	32481
8	1047.6577	1047.6590	-1.3E-03	36991
9	1175.7406	1175.7428	-2.2E-03	16319
10	1303.8237	1303.8265	-2.8E-03	9034
11	1431.9066	1431.9102	-3.6E-03	3587
12	1559.9918	1559.9940	-2.2E-03	1479

 $MM_n^H + Na^+$

n	<i>m/z /</i> Da	<i>m/z /</i> Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
3	395.2391	395.2404	-1.3E-03	614
4	523.3226	523.3241	-1.5E-03	1664
5	651.4059	651.4079	-2.0E-03	1756
6	779.4896	779.4916	-2.0E-03	2129
7	907.5729	907.5753	-2.4E-03	2029
8	1035.6567	1035.6590	-2.3E-03	2019
9	1163.7390	1163.7428	-3.8E-03	1552
10	1291.8227	1291.8265	-3.8E-03	1103
11	1419.9047	1419.9102	-5.5E-03	621
12	1547.9893	1547.9940	-4.7E-03	318

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
1	251.1247	251.1254	-6.7E-04	502
2	379.2086	379.2091	-5.0E-04	2443
3	507.2918	507.2928	-1.0E-03	2165
4	635.3757	635.3766	-8.6E-04	2150
5	763.4585	763.4603	-1.8E-03	1686
6	891.5417	891.5440	-2.3E-03	1701
7	1019.6251	1019.6277	-2.6E-03	1643
8	1147.7085	1147.7115	-3.0E-03	1159
9	1275.7909	1275.7952	-4.3E-03	768
10	1403.8751	1403.8789	-3.8E-03	464
11	1531.9609	1531.9627	-1.8E-03	241

n	<i>m/z /</i> Da	<i>m/z /</i> Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
1	239.1248	239.1254	-5.7E-04	3234
2	367.2087	367.2091	-4.0E-04	1724
3	495.2917	495.2928	-1.1E-03	1848
4	623.3752	623.3766	-1.4E-03	1561
5	751.4585	751.4603	-1.8E-03	1264
6	879.5422	879.5440	-1.8E-03	1215
7	1007.6264	1007.6277	-1.3E-03	1120
8	1135.7094	1135.7115	-2.1E-03	853
9	1263.7908	1263.7952	-4.4E-03	549
10	1391.8752	1391.8789	-3.7E-03	310

Figure S6: ESI-MS data of β scission products: batch polymerization at 120°C with $c_{BA,0}$ = 3.69 mol·L⁻¹ in dioxane (S₂: dioxane end group).

n	<i>m/z /</i> Da	<i>m/z /</i> Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
2	279.1567	279.1567	3.0E-05	154718
3	407.2402	407.2404	-2.0E-04	76861
4	535.3238	535.3241	-3.3E-04	180612
5	663.4073	663.4079	-5.6E-04	80100
6	791.4908	791.4916	-7.9E-04	90155
7	919.5742	919.5753	-1.1E-03	39812
8	1047.658	1047.6590	-1.0E-03	41404
9	1175.7415	1175.7428	-1.3E-03	17176
10	1303.8253	1303.8265	-1.2E-03	10424
11	1431.9083	1431.9102	-1.9E-03	3881
12	1559.9919	1559.9940	-2.1E-03	1694

 $MM_n^H + Na^+$

n	<i>m/z /</i> Da	<i>m/z /</i> Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
3	395.2397	395.2404	-7.0E-04	625
4	523.3236	523.3241	-5.3E-04	2098
5	651.4073	651.4079	-5.6E-04	2863
6	779.4906	779.4916	-9.9E-04	3756
7	907.5732	907.5753	-2.1E-03	3392
8	1035.6571	1035.6590	-1.9E-03	3073
9	1163.7406	1163.7428	-2.2E-03	2284
10	1291.8244	1291.8265	-2.1E-03	1520
11	1419.9068	1419.9102	-3.4E-03	817
12	1547.9911	1547.9940	-2.9E-03	454

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
1	251.1255	251.1254	1.3E-04	251
2	379.2088	379.2091	-3.0E-04	1099
3	507.2925	507.2928	-3.3E-04	1735
4	635.3765	635.3766	-5.9E-05	2402
5	763.4589	763.4603	-1.4E-03	2039
6	891.5423	891.5440	-1.7E-03	1939
7	1019.6247	1019.6277	-3.0E-03	1738
8	1147.7096	1147.7115	-1.9E-03	1289
9	1275.7926	1275.7952	-2.6E-03	900
10	1403.8763	1403.8789	-2.6E-03	544
11	1531.9603	1531.9627	-2.4E-03	283

n	<i>m/z /</i> Da	<i>m/z /</i> Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
1	239.1251	239.1254	-2.7E-04	896
2	367.209	367.2091	-1.0E-04	871
3	495.292	495.2928	-8.3E-04	1357
4	623.3761	623.3766	-4.6E-04	1437
5	751.4596	751.4603	-6.9E-04	1348
6	879.5428	879.5440	-1.2E-03	1320
7	1007.6271	1007.6277	-6.5E-04	1136
8	1135.7099	1135.7115	-1.6E-03	854
9	1263.7771	1263.7952	-1.8E-02	767
10	1391.8779	1391.8789	-1.0E-03	328

Figure S7: ESI-MS data of β scission products: batch polymerization at 130°C with $c_{BA,0}$ = 2.92 mol·L⁻¹ in dioxane (S₂: dioxane end group).

 $MM_n^{=CH2} + Na^+$

n	<i>m/z /</i> Da	<i>m/z /</i> Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
2	279.1567	279.1567	3.0E-05	150724
3	407.2404	407.2404	0.0E+00	108442
4	535.3239	535.3241	-2.3E-04	129539
5	663.4073	663.4079	-5.6E-04	75672
6	791.4910	791.4916	-5.9E-04	56691
7	919.5747	919.5753	-6.2E-04	40972
8	1047.6583	1047.6590	-7.5E-04	32089
9	1175.7414	1175.7428	-1.4E-03	18723
10	1303.8246	1303.8265	-1.9E-03	9742
11	1431.9078	1431.9102	-2.4E-03	4454
12	1559.9929	1559.9940	-1.1E-03	1761

 $MM_n^H + Na^+$

n	<i>m/z /</i> Da	<i>m/z /</i> Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
2	267.1573	267.1567	6.3E-04	262
3	395.2399	395.2404	-5.0E-04	970
4	523.3237	523.3241	-4.3E-04	2618
5	651.4071	651.4079	-7.6E-04	2912
6	779.4904	779.4916	-1.2E-03	3237
7	907.5735	907.5753	-1.8E-03	2924
8	1035.6572	1035.6590	-1.8E-03	2719
9	1163.7402	1163.7428	-2.6E-03	1977
10	1291.8225	1291.8265	-4.0E-03	1447
11	1419.9063	1419.9102	-3.9E-03	748

12 1547.9889 1547.9940 -5.1E-03 411					
	12	1547.9889	1547.9940	-5.1E-03	411

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
1	251.1251	251.1254	-2.7E-04	834
2	379.2092	379.2091	1.0E-04	2188
3	507.2926	507.2928	-2.3E-04	3288
4	635.3759	635.3766	-6.6E-04	2945
5	763.4596	763.4603	-6.9E-04	2848
6	891.5431	891.5440	-9.2E-04	2626
7	1019.6266	1019.6277	-1.1E-03	2379
8	1147.7103	1147.7115	-1.2E-03	1696
9	1275.7924	1275.7952	-2.8E-03	1191
10	1403.8751	1403.8789	-3.8E-03	668
11	1531.9591	1531.9627	-3.6E-03	311

n	m/z / Da	m/z / Da	$\Lambda m/z$ / Da	intensity
	experimental	theoretical		
1	239.1252	239.1254	-1.7E-04	1353
2	367.2092	367.2091	1.0E-04	1337
3	495.2927	495.2928	-1.3E-04	1610
4	623.3760	623.3766	-5.6E-04	1430
5	751.4597	751.4603	-5.9E-04	1354
6	879.5433	879.5440	-7.2E-04	1168
7	1007.6273	1007.6277	-4.5E-04	1086
8	1135.7104	1135.7115	-1.1E-03	848
9	1263.7920	1263.7952	-3.2E-03	524
10	1391.8730	1391.8789	-5.9E-03	292

Figure S8: ESI-MS data of β scission products: batch polymerization at 130°C with $c_{BA,0}$ = 3.69 mol·L⁻¹ in dioxane (S₂: dioxane end group).

	1.15	1 15		
n	m/z / Da	<i>m/z /</i> Da	$\Delta m/z$ / Da	intensity
	experimental	theoretical		
2	279.1561	279.1567	-5.7E-04	126665
3	407.2395	407.2404	-9.0E-04	83707
4	535.3228	535.3241	-1.3E-03	94514
5	663.4063	663.4079	-1.6E-03	55015
6	791.4897	791.4916	-1.9E-03	39079
7	919.5732	919.5753	-2.1E-03	26225
8	1047.657	1047.6590	-2.0E-03	18745
9	1175.7406	1175.7428	-2.2E-03	10663
10	1303.824	1303.8265	-2.5E-03	5336
11	1431.9076	1431.9102	-2.6E-03	2387
12	1559.9906	1559.9940	-3.4E-03	938

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	267.1559	267.1567	-7.7E-04	203
3	395.2397	395.2404	-7.0E-04	896
4	523.3225	523.3241	-1.6E-03	2067
5	651.4063	651.4079	-1.6E-03	2218
6	779.4891	779.4916	-2.5E-03	2432
7	907.5723	907.5753	-3.0E-03	2069
8	1035.6555	1035.6590	-3.5E-03	1793
9	1163.7396	1163.7428	-3.2E-03	1335
10	1291.8237	1291.8265	-2.8E-03	873
11	1419.9054	1419.9102	-4.8E-03	469
12	1547.9881	1547.9940	-5.9E-03	242

 S_2 - $MM_n^{=CH2}$ + Na^+

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
1	251.1247	251.1254	-6.7E-04	577
2	379.2083	379.2091	-8.0E-04	1657
3	507.2916	507.2928	-1.2E-03	2288
4	635.3747	635.3766	-1.9E-03	2058
5	763.4584	763.4603	-1.9E-03	1902
6	891.5415	891.5440	-2.5E-03	1639
7	1019.6248	1019.6277	-2.9E-03	1416
8	1147.7084	1147.7115	-3.1E-03	990
9	1275.7929	1275.7952	-2.3E-03	634
10	1403.8758	1403.8789	-3.1E-03	370
11	1531.9598	1531.9627	-2.9E-03	181

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
1	239.1246	239.1254	-7.7E-04	856
2	367.2082	367.2091	-9.0E-04	1144
3	495.2917	495.2928	-1.1E-03	1271
4	623.3745	623.3766	-2.1E-03	1097
5	751.459	751.4603	-1.3E-03	908
6	879.5419	879.5440	-2.1E-03	831
7	1007.6259	1007.6277	-1.8E-03	688
8	1135.709	1135.7115	-2.5E-03	465
9	1263.7929	1263.7952	-2.3E-03	296
10	1391.8754	1391.8789	-3.5E-03	172

Figure S9: ESI-MS data of β scission products: batch polymerization at 140°C with $c_{BA,0}$ = 2.92 mol·L⁻¹ in dioxane (S₂: dioxane end group).

1	I			
n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	279.1558	279.1567	-8.7E-04	45667
3	407.2393	407.2404	-1.1E-03	44493
4	535.3226	535.3241	-1.5E-03	39521
5	663.4058	663.4079	-2.1E-03	27413
6	791.4894	791.4916	-2.2E-03	20387
7	919.5730	919.5753	-2.3E-03	16363
8	1047.6565	1047.6590	-2.5E-03	12174
9	1175.7395	1175.7428	-3.3E-03	7970
10	1303.8221	1303.8265	-4.4E-03	4199
11	1431.9053	1431.9102	-4.9E-03	2091
12	1559.9893	1559.9940	-4.7E-03	836
-		-		

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
3	395.2391	395.2404	-1.3E-03	927
4	523.3226	523.3241	-1.5E-03	1536
5	651.4057	651.4079	-2.2E-03	1601
6	779.4889	779.4916	-2.7E-03	1705
7	907.5723	907.5753	-3.0E-03	1537
8	1035.6561	1035.6590	-2.9E-03	1433
9	1163.7387	1163.7428	-4.1E-03	1043
10	1291.8214	1291.8265	-5.1E-03	736
11	1419.9040	1419.9102	-6.2E-03	384
12	1547.9882	1547.9940	-5.8E-03	200

-				1
n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	379.2083	379.2091	-8.0E-04	975
3	507.2914	507.2928	-1.4E-03	1475
4	635.3747	635.3766	-1.9E-03	1421
5	763.4580	763.4603	-2.3E-03	1419
6	891.5419	891.5440	-2.1E-03	1322
7	1019.6251	1019.6277	-2.6E-03	1178
8	1147.7081	1147.7115	-3.4E-03	872
9	1275.7915	1275.7952	-3.7E-03	560
10	1403.8741	1403.8789	-4.8E-03	341
11	1531.9586	1531.9627	-4.1E-03	152

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	367.2080	367.2091	-1.1E-03	492
3	495.2912	495.2928	-1.6E-03	575
4	623.3745	623.3766	-2.1E-03	545
5	751.4577	751.4603	-2.6E-03	510
6	879.5420	879.5440	-2.0E-03	486
7	1007.6251	1007.6277	-2.6E-03	454
8	1135.7090	1135.7115	-2.5E-03	337
9	1263.7915	1263.7952	-3.7E-03	229
10	1391.8735	1391.8789	-5.4E-03	126

Figure S10: ESI-MS data of β scission products: batch polymerization at 140°C with $c_{BA,0}$ = 3.69 mol·L⁻¹ in dioxane (S₂: dioxane end group).

<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
experimental	theoretical		
279.1558	279.1567	-8.7E-04	150376
407.2391	407.2404	-1.3E-03	115060
535.3224	535.3241	-1.7E-03	100496
663.4058	663.4079	-2.1E-03	72539
791.4891	791.4916	-2.5E-03	49879
919.5724	919.5753	-2.9E-03	39468
1047.656	1047.6590	-3.0E-03	26957
1175.7396	1175.7428	-3.2E-03	17989
1303.8232	1303.8265	-3.3E-03	9417
1431.9059	1431.9102	-4.3E-03	4720
1559.9895	1559.9940	-4.5E-03	1976
	<i>m/z /</i> Da experimental 279.1558 407.2391 535.3224 663.4058 791.4891 919.5724 1047.656 1175.7396 1303.8232 1431.9059 1559.9895	m/z / Dam/z / Daexperimentaltheoretical279.1558279.1567407.2391407.2404535.3224535.3241663.4058663.4079791.4891791.4916919.5724919.57531047.6561047.65901175.73961175.74281303.82321303.82651431.90591431.91021559.98951559.9940	m/z / Da m/z / Da $\Delta m/z$ / Daexperimentaltheoretical $\Delta m/z$ / Da279.1558279.1567-8.7E-04407.2391407.2404-1.3E-03535.3224535.3241-1.7E-03663.4058663.4079-2.1E-03791.4891791.4916-2.5E-03919.5724919.5753-2.9E-031047.6561047.6590-3.0E-031175.73961175.7428-3.2E-031303.82321303.8265-3.3E-031431.90591431.9102-4.3E-031559.98951559.9940-4.5E-03

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
2	267.1561	267.1567	-5.7E-04	319
3	395.2391	395.2404	-1.3E-03	2090
4	523.3223	523.3241	-1.8E-03	3657
5	651.4055	651.4079	-2.4E-03	3925
6	779.4886	779.4916	-3.0E-03	4094
7	907.5718	907.5753	-3.5E-03	3574
8	1035.6547	1035.6590	-4.3E-03	3276
9	1163.7384	1163.7428	-4.4E-03	2421
10	1291.8221	1291.8265	-4.4E-03	1659
11	1419.9046	1419.9102	-5.6E-03	939
12	1547.9877	1547.9940	-6.3E-03	492

 S_2 - $MM_n^{=CH2}$ + Na^+

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
1	251.1245	251.1254	-8.7E-04	803
2	379.2079	379.2091	-1.2E-03	2642
3	507.2911	507.2928	-1.7E-03	3349
4	635.3744	635.3766	-2.2E-03	3065
5	763.4577	763.4603	-2.6E-03	3099
6	891.5407	891.5440	-3.3E-03	2779
7	1019.6242	1019.6277	-3.5E-03	2414
8	1147.7078	1147.7115	-3.7E-03	1782
9	1275.7918	1275.7952	-3.4E-03	1202
10	1403.8749	1403.8789	-4.0E-03	718
11	1531.958	1531.9627	-4.7E-03	357

n	<i>m/z /</i> Da	<i>m/z /</i> Da	Δ m/z / Da	intensity
	experimental	theoretical		
1	239.1246	239.1254	-7.7E-04	1194
2	367.2079	367.2091	-1.2E-03	1305
3	495.2909	495.2928	-1.9E-03	1320
4	623.3744	623.3766	-2.2E-03	1286
5	751.4578	751.4603	-2.5E-03	1100
6	879.5412	879.5440	-2.8E-03	1013
7	1007.6244	1007.6277	-3.3E-03	886
8	1135.7082	1135.7115	-3.3E-03	695
9	1263.7919	1263.7952	-3.3E-03	466
10	1391.8741	1391.8789	-4.8E-03	282

Figures S11 – S16 give the following NMR spectra of MM₃^{=CH2}

¹H spectrum (600 MHz)
¹³C {¹H} spectrum (150 MHz)
¹³C-DEPT135 spectrum (150 MHz)
¹H, ¹H-COSY (DQF-COSY, 600 MHz)
¹H, ¹³C-HSQC (600 MHz)
¹H, ¹³C-HMBC (600 MHz)

Figure S11: ¹H spectrum of the unsaturated trimer ($MM_3^{=CH2}$) (600 MHz).

Figure S12: ${}^{13}C{}^{1}H$ spectrum of MM₃^{=CH2} (150 MHz).

Figure S13: ¹³C-DEPT135 spectrum of $MM_3^{=CH2}$ (150 MHz).

Figure S14: ¹H,¹H-COSY (DQF-COSY) of MM₃^{=CH2} (600 MHz).

Figure S15: 1 H, 13 C-HSQC of MM $_{3}^{=CH2}$ (600 MHz).

Figure S16: 1 H, 13 C-HMBC of MM3^{=CH2} (600 MHz).