Transition metal-free thiol-yne click polymerization toward \(Z\)-stereoregular poly(vinylene sulfide)s

Die Huang,† a Yong Liu,† a Shang Guo, a Baixue Li, a Jia Wang, a Bicheng Yao, b Anjun Qin* a and Ben Zhong Tang* a,b

a State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China. E-mail: msqinaj@scut.edu.cn

b Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China. E-mail: tangbenz@ust.hk

† These authors contributed equally to this work.
Contents

Table S1. Effect of base amount on the polymerization of 1a and 2a S3
Table S2. Effect of monomer concentration on the polymerization of 1a and 2a S3

Fig. S1 FT-IR spectra of monomers (A) 1a and (B) 2b and their polymer (C) P1a2b S4
Fig. S2 FT-IR spectra of monomers (A) 1a and (B) 2c and their polymer (C) P1a2c S4
Fig. S3 FT-IR spectra of monomers (A) 1b and (B) 2b and their polymer (C) P1b2b S5
Fig. S4 1H NMR spectra of monomer (A) 1a and (B) 2b and their polymer (C) P1a2b in CDCl3. The solvent peaks are marked with asterisks. S5
Fig. S5 1H NMR spectra of monomer (A) 1a and (B) 2c and their polymer (C) P1a2c in CDCl3. The solvent peaks are marked with asterisks. S6
Fig. S6 1H NMR spectra of monomer (A) 1b and (B) 2b and their polymer (C) P1b2b in CDCl3. The solvent peaks are marked with asterisks. S6
Fig. S7 13C NMR spectra of monomer (A) 1a and (B) 2b and their polymer (C) P1a2b in CDCl3. The solvent peaks are marked with asterisks. S7
Fig. S8 13C NMR spectra of monomer (A) 1a and (B) 2c and their polymer (C) P1a2c in CDCl3. The solvent peaks are marked with asterisks. S7
Fig. S9 13C NMR spectra of monomer (A) 1b and (B) 2b and their polymer (C) P1b2b in CDCl3. The solvent peaks are marked with asterisks. S8
Fig. S10 1H NMR spectra of P1a2b in CDCl3: (A) freshly prepared, (B) stored under ambient conditions for one year. The solvent peaks are marked with asterisks. S8
Fig. S11 1H NMR spectra of P1b2b in CDCl3: (A) freshly prepared, (B) stored under ambient conditions for one year. The solvent peaks are marked with asterisks. S9
Fig. S12 PL spectra of P1b2b in THF and THF/water mixtures with different water fractions (f_w). Polymer concentration: 10^-5 M. Excitation wavelength: 352 nm. S9
Table S1. Effect of base amount on the polymerization of 1a and 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>K₃PO₄ (equiv)</th>
<th>Yield (%)</th>
<th>Mₘ</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>92</td>
<td>9600</td>
<td>1.80</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>95</td>
<td>10 600</td>
<td>1.66</td>
</tr>
<tr>
<td>3c</td>
<td>3</td>
<td>95</td>
<td>18 500</td>
<td>1.61</td>
</tr>
</tbody>
</table>

*a*Carried out in NMP in the presence of K₃PO₄ under nitrogen at 100 °C for 24 h, [1a] = [2a] = 0.1 M. *b*Estimated by GPC in THF on the basis of a linear polystyrene calibration, polydispersity index (D) = Mₘ/Mₙ. *c*Data taken from Table 2, entry 5.

Table S2. Effect of monomer concentration on the polymerization of 1a and 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>[1a] (M)</th>
<th>Yield (%)</th>
<th>Mₘ</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.025</td>
<td>60</td>
<td>5500</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>92</td>
<td>8000</td>
<td>1.66</td>
</tr>
<tr>
<td>3c</td>
<td>0.1</td>
<td>95</td>
<td>18 500</td>
<td>1.61</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>91</td>
<td>15 000</td>
<td>1.87</td>
</tr>
</tbody>
</table>

*a*Carried out in NMP in the presence of K₃PO₄ under nitrogen at 100 °C for 24 h, [1a] = [2a], [K₃PO₄] = 3[1a]. *b*Estimated by GPC in THF on the basis of a linear polystyrene calibration, polydispersity index (D) = Mₘ/Mₙ. *c*Data taken from Table 2, entry 5.
Fig. S1 FT-IR spectra of monomers (A) 1a and (B) 2b and their polymer (C) \(P_{1a2b} \)

Fig. S2 FT-IR spectra of monomers (A) 1a and (B) 2c and their polymer (C) \(P_{1a2c} \)
Fig. S4: H NMR spectra of monomer (A) 1a and (B) 2b and their polymer (C) P1a2b in CDCl₃. The solvent peaks are marked with asterisks.

Fig. S3: FT-IR spectra of monomers (A) 1b and (B) 2b and their polymer (C) P1b2b.
Fig. S5 1H NMR spectra of monomer (A) 1a and (B) 2c and their polymer (C) P1a2c in CDCl$_3$. The solvent peaks are marked with asterisks.

Fig. S6 1H NMR spectra of monomer (A) 1b and (B) 2b and their polymer (C) P1b2b in CDCl$_3$. The solvent peaks are marked with asterisks.
Fig. S7 13C NMR spectra of monomer (A) 1a and (B) 2b and their polymer (C) P1a2b in CDCl$_3$. The solvent peaks are marked with asterisks.

Fig. S8 13C NMR spectra of monomer (A) 1a and (B) 2c and their polymer (C) P1a2c in CDCl$_3$. The solvent peaks are marked with asterisks.
Fig. S9 13C NMR spectra of monomer (A) 1b and (B) 2b and their polymer (C) P1b2b in CDCl$_3$. The solvent peaks are marked with asterisks.

Fig. S10 1H NMR spectra of P1a2b in CDCl$_3$: (A) freshly prepared, (B) stored under ambient conditions for one year. The solvent peaks are marked with asterisks.
Fig. S11 ¹H NMR spectra of P1b2b in CDCl₃: (A) freshly prepared, (B) stored under ambient conditions for one year. The solvent peaks are marked with asterisks.

Fig. S12 PL spectra of P1b2b in THF and THF/water mixtures with different water fractions (f_w). Polymer concentration: 10^{-5} M. Excitation wavelength: 352 nm.