Supporting Information

The development of bio-acrylic polymers from Cyrene™: transforming a green solvent to a green polymer

Parijat Ray, a Timothy Hughes b, Craig Smith b, Mena Hibbert c, Kei Saito d and George P Simon a

aDepartment of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia. e-mail: george.simon@monash.edu; Fax: +61 399054934; Tel: +61 399054936

bPPG Industries, Springdale, PA 15144, USA

cPPG Industries Australia Pty Ltd, Clayton, Victoria 3168, Australia

dSchool of Chemistry, Monash University, Clayton, VIC 3800, Australia. e-mail: kei.saito@monash.edu; Fax: +6139905851; Tel: +61399054600

Fig. S1 Stereo centers of Levoglucosanol (Cyrene-OH)

Fig S2 13C NMR of Cyrene
Fig. S3 13C NMR of Cyrene-OH

Fig. S4 13C NMR of m-Cyrene
Fig. S5 ATR-FTIR spectrum of m-Cyrene homopolymer

Fig. S6 DSC analysis of m-Cyrene homopolymer from bulk polymerization
Fig. S7 DSC analysis of m-Cyrene homopolymer by emulsion polymerization

![DSC analysis graph](image)

Tg = 192.83°C

Fig. S8 Polymerization kinetics of m-Cyrene in different solvents

![Polymerization kinetics graph](image)

- DMSO
- Cyrene
- GVL
- MIBK
Reactivity ratio calculation using Fineman-Ross (F-R) and Kelen-Tüdös (K-T) models

\[
\text{F-R model} \quad G = r_1 H - r_2
\]

\[
\text{K-T model} \quad \eta = \left[r_1 + \frac{r_2}{\alpha} \right] \mu - \frac{r_2}{\alpha}
\]

where, \(G = F(f-1)/f \), \(H = F^2/f \), \(\eta = G/(\alpha + H) \), \(\mu = H/(\alpha + H) \), \(F = M_1/M_2 \), \(f = m_1/m_2 \)

\[\alpha = (H_{\max}/H_{\min})^{1/2} \]

\(M_1 \) = mole fraction of m-Cyrene in feed, \(M_2 \) = mole fraction of IBMA in feed,

\(m_1 \) = mole fraction of m-Cyrene in copolymer, \(m_2 \) = mole fraction of IBMA in copolymer,

\(r_1 \) = reactivity ratio of m-Cyrene, \(r_2 \) = reactivity ratio of IBMA.

Fig. S9 (a) F-R model and (b) K-T model

In F-R and K-T models, \(G \) is plotted against \(H \) (Fig S8.a) and \(\eta \) is plotted against \(\mu \) (Fig S8.b) respectively. \(G \) vs \(H \) plot gives a straight line with \(r_1 \) as slope and \(-r_2\) as the intercept. Similar plot of \(\eta \) vs \(\mu \) provides \(\left[r_1 + \frac{r_2}{\alpha} \right] \) as a slope and \((-r_2/\alpha)\) as its intercept.