Supporting information

Synthesis of Chain End Acyl-Functionalized Polymers by Living Anionic Polymerization: Versatile Precursor for H-Shaped Polymers

Kazuki Takahata, Satoshi Uchida, Raita Goseki and Takashi Ishizone

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552 Japan

e-mail: tishizon@polymer.titech.ac.jp
Contents

Synthesis of chain end acyl-functionalized PIsp. 3
Synthesis of H-shaped block copolymer of St and 2VP. 4

Figure S1. 1H NMR spectrum of run 2. 5
Figure S2. 13C NMR spectrum of run 2. 5
Figure S3. FT-IR spectra of I (A) and run 2 (B). 6
Figure S4. 1H NMR spectrum of run 8. 6
Figure S5. 13C NMR spectrum of run 8. 7
Figure S6. 1H NMR spectrum of run 9. 7
Figure S7. 13C NMR spectrum of run 9. 8
Figure S8. MALDI-TOF-MS spectrum of run 9. 8
Figure S9. 1H NMR spectrum of run 10. 9
Figure S10. 13C NMR spectrum of run 10. 9
Figure S11. MALDI-TOF-MS spectrum of run 10. 10
Figure S12. 1H NMR spectrum of H-shaped PS. 10
Figure S13. IR spectra of starting acyl end-functionalized telechelic PSt (A), and H-shaped PSt (B). 11
Figure S14. GPC curves of starting acyl end-functionalized telechelic PSt (A), the crude product after the grafting reaction (B), and the isolated H-shaped block copolymer with St and 2VP (C). 11
Figure S15. 1H NMR spectrum of H-shaped copolymer with St and 2VP. 11
Figure S16. IR spectra of starting acyl end-functionalized telechelic PSt (A), and H-shaped copolymer with St and 2VP (B). 12
Figure S17. 1H NMR spectrum of 1-adamantanyl 4-bromophenyl ketone. 13
Figure S18. 13C NMR spectrum of 1-adamantanyl 4-bromophenyl ketone. 13
Figure S19. 1H NMR spectrum of 2-(1-adamantyl)-2-(4-bromophenyl)-1,3-dioxolane. 14
Figure S20. 13C NMR spectrum of 2-(1-adamantyl)-2-(4-bromophenyl)-1,3-dioxolane. 14
Figure S21. 1H NMR spectrum of I. 15
Figure S22. 13C NMR spectrum of I. 15
Synthesis of chain end acyl-functionalized PIsp.

A difunctional living PIsp was obtained by the anionic polymerization of Isp (0.43 g, 6.25 mmol) with K-Naph (0.147 mmol) in THF at −78 °C for 4 h (Table 1, run 9). DPE (0.265 mmol, 1.6 equivalent) in THF (2 mL) was added at −78 °C and reacted for 15 min. A THF solution (6 mL) of 1 (0.286 mmol, 1.9 equivalent) was then added at −78 °C to the solution of DPE-capped living PIsp and reacted for 2 h. Finally, the end-functionalization was terminated with degassed AcOH. A white polymer (0.51 g, 96%) was obtained by pouring reaction solution into MeOH. The resulting PIsp was purified by reprecipitation in MeOH and freeze-drying from the benzene solution.

1H NMR (400 MHz; CDCl$_3$; ppm) $\delta = 1.20-2.35$ (br, main chain), 1.72 (br, 24H, adamantyl), 1.95-2.03 (br, 36H, adamantyl), 3.74 (s, 2H, terminal CH), 4.69-5.74 (br, olefin protons, 7.05-7.41 (br, aromatic).

13C NMR (100 MHz; CDCl$_3$; ppm): $\delta = 16.5-42.4$ (-CH$_3$), 28.3 (adamantyl), 36.7 (adamantyl), 40.2 (adamantyl), 36.7-50.0 (main chain), 47.0 (adamantyl), 110.6-111.6 (=CH$_2$), 126.0-128.3 (Ar), 136-139 (-CH=CH$_2$), 147.2-148.9 (-C(CH$_3$)=CH$_2$), 209.1 (C=O).

IR (KBr; cm$^{-1}$): 3072, 2923, 2362, 1780, 1668 (C=O), 1644 (=CH$_2$), 1602, 1448, 1411, 1374, 885, 699.
Synthesis of H-shaped block copolymer of St and 2VP.

A living P2VP anion was firstly prepared by the polymerization of 2VP (0.98 g, 9.31 mmol) with sec-BuLi (0.0892 mmol) and DPE (0.161 mmol) in THF at –78 °C. Then, to the solution of the P2VP anion, a THF solution of chain end acyl tetra-functionalized PSt \((M_n = 3.9 \text{ kg/mol}, 0.0181 \text{ mmol}) \) was added at –78 °C and reacted for 24 h. During the reaction, the red coloration of the living P2VP was maintained. Finally, the reaction was terminated with MeOH. A polymer of white powder was obtained by pouring reaction solution to hexane. A bimodal GPC curve of the reaction system was obtained, which was corresponding to the objective H-shaped block copolymer and the excess amount of P2VP branch. The H-shaped block copolymer was isolated in 39% yield by repeating fractional precipitations (ethanol/hexane), and purified by freeze-drying from the benzene solution.

\(^{1}\)H NMR (400 MHz; CDCl\(_3\); ppm) \(\delta = 0.58-0.72 \) (m, 24H, \(\text{CH}_3\text{CH}_2\text{CHC}_3 \)), \(0.98-2.41 \) (br, backbone and adamantyl), \(3.75 \) (s, 2H, terminal CH), \(6.15-7.25 \) (br, Ar), \(8.06-8.43 \) (br, 6-position in pyridine ring).

IR (KBr; cm\(^{-1}\)) 3004, 2930, 1590, 1567, 1473, 1433, 1148, 747, 700.
Figure S1. 1H NMR spectrum of run 2.

Figure S2. 13C NMR spectrum of run 2.
Figure S3. FT-IR spectra of 1 (A) and run 2 (B).

Figure S4. 1H NMR spectrum of run 8.
Figure S5. 13C NMR spectrum of run 8.

Figure S6. 1H NMR spectrum of run 9.
Figure S7. 13C NMR spectrum of run 9.

Figure S8. MALDI-TOF-MS spectrum of run 9.
Figure S9. 1H NMR spectrum of run 10.

Figure S10. 13C NMR spectrum of run 10.
Figure S11. MALDI-TOF-MS spectrum of run 10.

Figure S12. 1H NMR spectrum of H-shaped PSt.
Figure S13. IR spectra of starting acyl end-functionalized telechelic PST (A), and H-shaped PST (B).

Figure S14. GPC curves of starting acyl end-functionalized telechelic PST (A), the crude product after the grafting reaction (B), and the isolated H-shaped block copolymer with St and 2VP (C).
Figure S15. 1H NMR spectrum of H-shaped copolymer with St and 2VP.

Figure S16. IR spectra of starting acyl end-functionalized telechelic PSt (A), and H-shaped copolymer with St and 2VP (B).
Figure S17. 1H NMR spectrum of 1-adamantanyl 4-bromophenyl ketone.

Figure S18. 13C NMR spectrum of 1-adamantanyl 4-bromophenyl ketone.
Figure S19. 1H NMR spectrum of 2-(1-adamantyl)-2-(4-bromophenyl)-1,3-dioxolane.

Figure S20. 13C NMR spectrum of 2-(1-adamantyl)-2-(4-bromophenyl)-1,3-dioxolane.
Figure S21. 1H NMR spectrum of 1.

Figure S22. 13C NMR spectrum of 1.