“One-Pot” Aminolysis/Thia-Michael Addition preparation of well-defined amphiphilic PVDF-\textit{b}-PEG-\textit{b}-PVDF triblock copolymers: Self-assembly behaviour in mixed solvents

Enrique Folgado,a,b Marc Guerre,a† Antonio Da Costa,c Anthony Ferri,c Ahmed Addad,d Vincent Ladmiral,a* and Mona Semsarilarb*

aInstitut Charles Gerhardt Montpellier, ICGM UMR5253, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
bInstitut Européen des Membranes, IEM, UMR635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
cUniversité Artois, CNRS, Centrale Lille, ENSCL, Université Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-62300 Lens, France.
dUniversité Lille, Sciences et Technologies, CNRS, Unité Matériaux Et Transformations (UMET), F-59000 Lille, France.

Figure S1. PVDF-XA homopolymer 1H NMR (400 MHz (CD\textsubscript{3})\textsubscript{2}CO).
Figure S2. PVDF-XA homopolymer 19F NMR (376 MHz, (CD$_3$)$_2$CO).

Figure S3. PEG$_{6000}$ commercial polymer 1H NMR (400 MHz, CDCl$_3$).
Figure S4. PEG diacrylate homopolymer 1H NMR (400 MHz, (CD$_3$)$_2$SO).

Note: the peaks at 1.20 and 3.07 ppm are assigned to residual triethylammonium chloride.
Figure S5. PVDF-\textit{b}-PEG-\textit{b}-PVDF 1H NMR (400 MHz, (CD$_3$)$_2$SO), recorded at 60 °C).

Figure S6. PVDF-\textit{b}-PEG-\textit{b}-PVDF 19F NMR (376 MHz, (CD$_3$)$_2$SO).
Figure S7. 1H DOSY-NMR experiments recorded in (CD$_3$)$_2$SO at 60 °C of PVDF-XA homopolymer.

$D = 9.1 \times 10^{-5} \text{m}^2 \text{s}^{-1}$

Figure S8. 1H DOSY-NMR experiments recorded in (CD$_3$)$_2$SO at 60 °C of PEGDA homopolymer.

$D = 7.5 \times 10^{-5} \text{m}^2 \text{s}^{-1}$
Figure S9. 1H DOSY-NMR experiments recorded in (CD$_3$)$_2$SO) at 60 °C of PVDF-b-PEG-b-PVDF triblock copolymer.

\[D = 2.8 \times 10^{-5} \text{ m}^2\text{s}^{-1} \]

Figure S10. Thermogravimetric analysis (TGA). Weight derivative traces of the PVDF-XA and PEGDA homopolymers and of the PVDF$_{50}$-b-PEG$_{136}$-b-PVDF$_{50}$ triblock copolymer.
Figure S11. Differential scanning calorimetry (DSC) thermogram of PVDF-XA homopolymer.

Figure S12. Differential scanning calorimetry (DSC) thermogram of PEGDA homopolymer.
Figure S13. Differential scanning calorimetry (DSC) thermogram of PVDF-b-PEG-b-PVDF triblock copolymer.

S14. Calculation of the degrees of crystallinity

\[\chi_c(\%) = \frac{\Delta H_f}{\Delta H_f^o \cdot \Phi_m} \times 100 \]

Where \(\Delta H_f \) is heat of melting (extracted from the DSC trace) and \(\Delta H_f^o \) is a reference value and represents the heat of melting if the polymer were 100% crystalline (both in J/g). \(\Phi_m \) is the weight fraction of the different polymer forming the triblock copolymer.

\(\Delta H_f^o \) of PVDF and PEG were extracted from the literature as 104.7 J·g\(^{-1}\) and 196.8 J·g\(^{-1}\) respectively.\(^{1,2}\)

The molar mass of the triblock copolymer (deduced from NMR) is 12800 g·mol\(^{-1}\) and the weight fraction of the PVDF and PEG blocks (\(\Phi_m \)) are 0.53 and 0.47 respectively.

\[\chi_c \text{ PVDF} = \frac{26.15}{(104.7\cdot0.53)}\times100 = 47.1\% \]

\[\chi_c \text{ PEG} = \frac{49.77}{(196.8\cdot0.47)}\times100 = 53.8\% \]
Figure S15. Size distribution measured by DLS of block copolymer stock solutions. (a) 1% w/w solution in THF (b) 5% w/w solution in NMP.

- Solvents were filtered. Polymer solutions were not filtered
The micellization protocol leads to the formation of micelles and vesicles when solvent:non-solvent ratios of at least 1:4 are reached (THF/ethanol).

The nanoprecipitation protocol allowed the rapid formation of micelles, vesicles and crystalline aggregates at 1:6 solvent: non-solvent ratios employing NMP/water, THF/water and THF/ethanol respectively. Addition of more common solvent (containing BCP) leads to destabilization of the BCP assemblies and ill-defined or mixtures of structures were observed by TEM analysis.
Figure S17. AFM topographic images and height profiles of micelles (a) and vesicles (b)

Figure S18. XRD pattern of PEG₆₀₀₀₀.