Supporting Information

Light, temperature, and pH control of aqueous Azopyridine-terminated Poly(N-isopropylacrylamides) solutions

Hao Ren, a Xing-Ping Qiu, b Yan Shi, c Peng Yang, a Françoise M. Winnik* d

a Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
b Department of Chemistry, University of Montreal, CP 6128 Succursale Centre Ville, Montreal, QC, H3C 3J7, Canada.
c School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
d Laboratory of Polymer Chemistry, Department of Chemistry, PB 55, University of Helsinki, Helsinki FI00140 Finland

E-mail: francoise.winnik@helsinki.fi
Figure S1. Cloud points determination from transmittance at 550 nm of (a), C12-PN-Azo 12K and (b), C12-PN-AzPyC$_2$H$_5^+$ 12K (1.0 mg/mL) under different pH values.

Figure S2. Plot of the % transmittance at 550 nm as a function of temperature for solutions of PNIPAM (1.0 mg/mL) of various pH.

Figure S3. Plots of the % transmittance at 550 nm as a function of temperature for solutions of C12-PN-AzPy of various molar mass in water (pH 10).
Figure S4. UV-Vis spectra of aqueous solutions of C12-PN-AzPy 7K (0.5 mg/mL) under (a) pH 3, (b) pH 7 and (c) pH 10 before (black line) and under constant irradiation (red line); inset: transient absorption monitored at 355 nm of the solution after a 10 s irradiation at 365 nm, 15 °C.

Figure S5. 1H-NMR spectrum of C12-PN-AzPy 12K (a) before and (b) after UV irradiation under pH =10. (1.0 mg/mL in D$_2$O, 18.5 °C);

Figure S6. Changes of the transmittance at 550 nm as a function of temperature for aqueous solutions of C12-PN-AzPy (1.0 mg/mL) of (a)pH 3, (b) pH 7 and (c) pH 10 before irradiation (open symbols) and under continuous irradiation (full symbols) at 365 nm.
Figure S7. Plots of the absorbance at 550 nm as a function of pH for solutions of C12-PN-AzPy 7K at 20 °C (1.0 mg/mL)