Synthesis of PMMA-based block copolymers by consecutive irreversible and reversible addition-fragmentation chain transfer polymerizations

Cédric Bergerbit, Barbara Farias-Mancilla, Lucie Seiler, Vincent Monteil, Simon Harrisson, Franck D’Agosto,* Mathias Destarac*

Contents

1. Experimental details for the Mayo plot experiments ...2
2. 1H NMR spectrum of XD ..2
3. 1H NMR spectrum of TD ..3
4. Mayo plot for MMA polymerization in the presence of XD ..4
5. Influence of AIBN and XD concentrations on the polymerization of MMA4
6. 1H NMR analysis of PMMA-X1 (crude, precipitated once and precipitated twice)6
7. Experimental details for the synthesis of PMMA-b-PVAc copolymer with PMMA-X16
8. RI and UV traces of PMMA-b-PVAc and starting macroCTA PMMA-X1 obtained by SEC7
9. Mayo plot for MMA polymerization in the presence of TD ..7
10. 1H NMR spectrum of PMMA-T2 ...8
11. SEC traces obtained for the block copolymerization of PMMA-T2 with VAc at 60°C8
12. Evolution of VAc conversion upon block copolymerization with PMMA-T2 and PMMA-T3....8
1. Experimental details for the Mayo plot experiments

Table S1. Experimental details for the Mayo plot experiments. Polymerization performed at 80°C, [AIBN]/[MMA]₀ = 0.001. a) MMA conversion determined by ¹H NMR, b) Determined by SEC-RI in THF, PMMA calibration

<table>
<thead>
<tr>
<th>Entry</th>
<th>CTA</th>
<th>[CTA]₀/[MMA]₀</th>
<th>[MMA]₀ (mol L⁻¹)</th>
<th>Time (min)</th>
<th>Conv (mol %)</th>
<th>Mₘ (g mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XD</td>
<td>0</td>
<td>9.38</td>
<td>15</td>
<td>9.09</td>
<td>74 000</td>
</tr>
<tr>
<td>2</td>
<td>XD</td>
<td>0.001</td>
<td>9.38</td>
<td>15</td>
<td>6.54</td>
<td>52 500</td>
</tr>
<tr>
<td>3</td>
<td>XD</td>
<td>0.002</td>
<td>9.38</td>
<td>15</td>
<td>6.54</td>
<td>28 800</td>
</tr>
<tr>
<td>4</td>
<td>XD</td>
<td>0.005</td>
<td>9.38</td>
<td>15</td>
<td>5.66</td>
<td>15 000</td>
</tr>
<tr>
<td>5</td>
<td>XD</td>
<td>0.010</td>
<td>9.38</td>
<td>15</td>
<td>7.40</td>
<td>9 700</td>
</tr>
<tr>
<td>6</td>
<td>XD</td>
<td>0.020</td>
<td>9.38</td>
<td>15</td>
<td>1.96</td>
<td>7 200</td>
</tr>
<tr>
<td>7</td>
<td>TD</td>
<td>0</td>
<td>3.26</td>
<td>25</td>
<td>10.71</td>
<td>9 890</td>
</tr>
<tr>
<td>8</td>
<td>TD</td>
<td>0.001</td>
<td>3.26</td>
<td>25</td>
<td>5.66</td>
<td>8 200</td>
</tr>
<tr>
<td>9</td>
<td>TD</td>
<td>0.002</td>
<td>3.26</td>
<td>25</td>
<td>9.91</td>
<td>7 170</td>
</tr>
<tr>
<td>10</td>
<td>TD</td>
<td>0.005</td>
<td>3.26</td>
<td>25</td>
<td>2.91</td>
<td>4 570</td>
</tr>
<tr>
<td>11</td>
<td>TD</td>
<td>0.010</td>
<td>3.26</td>
<td>25</td>
<td>3.85</td>
<td>2 400</td>
</tr>
<tr>
<td>12</td>
<td>TD</td>
<td>0.020</td>
<td>3.26</td>
<td>25</td>
<td>1.96</td>
<td>1 380</td>
</tr>
</tbody>
</table>

2. ¹H NMR spectrum of XD

Figure S1. ¹H NMR spectrum of XD in CDCl₃.
3. 1H NMR spectrum of TD

Figure S2. 1H NMR spectrum of TD. 1H NMR solvent CDCl$_3$.

4. Mayo plot for MMA polymerization in the presence of XD

Figure S3. Mayo plot for the determination of the chain transfer constant to XD in MMA polymerization at 80°C. $2/DP_w$ vs [XD]/[MMA] (●) with the corresponding fit line (—).
Figure S4. Evolution of MMA (S4a) and XD (S4b) conversion as a function of time for different initial AIBN concentrations.
$[\text{MMA}]_0= 4.1\text{mol L}^{-1}$. Solvent = toluene.
6. 1H NMR analysis of PMMA-X1 (crude, precipitated once and precipitated twice)

Figure S5. a) Comparison of 1H NMR spectra of PMMA-X1 ($M_n = 4\ 100\ g\ mol^{-1}$) at different stages: crude product, precipitated once and precipitated twice, with their respective integration values of terminal −S-(C=S)-OCH_2CH$_3$ (B, 4.55-4.77 ppm) and PMMA (A, 3.50-3.65 ppm) regions. The corresponding PMMA and MMA assignments are also shown.

b) Zoom in the characteristic zone of the xanthate chain end. Analysis performed in CDCl$_3$.

7. Experimental details for the synthesis of PMMA-b-PVAc copolymer with PMMA-X1

Table S2. Experimental details and macromolecular characteristics of PMMA-b-PVAc. M_ntheo = 25 000 g mol$^{-1}$.

<table>
<thead>
<tr>
<th>Copolymer</th>
<th>[PMMA-X1] (mol L$^{-1}$)</th>
<th>[VAc] (mol L$^{-1}$)</th>
<th>[AIBN] (mol L$^{-1}$)</th>
<th>Time (h)</th>
<th>T (°C)</th>
<th>Conv a (%)</th>
<th>M_nSEC b (g mol$^{-1}$)</th>
<th>M_wSEC b (g mol$^{-1}$)</th>
<th>\bar{D} a</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA-b-PVAc</td>
<td>0.029</td>
<td>8.50</td>
<td>0.088</td>
<td>6</td>
<td>60</td>
<td>98</td>
<td>24 800</td>
<td>44 900</td>
<td>1.80</td>
</tr>
</tbody>
</table>

a Determined by 1H NMR; b Determined by SEC-RI in THF
8. RI and UV traces of PMMA-b-PVAc and starting PMMA-X1 macro-CTA obtained by SEC in THF

![SEC traces for PMMA-b-PVAc and PMMA-X1](image)

Figure S6. SEC RI(—−) and UV (—−−) traces for PMMA-b-PVAc and PMMA-X1.

9. Mayo plot for MMA polymerization in the presence of TD

![Mayo plot for MMA polymerization mediated by TD](image)

Figure S7. Mayo plot for MMA polymerization mediated by TD at 80°C, 2/DPₜ vs [TD]/[MMA] (●) with the corresponding linear fit line (—).
10. 1H NMR spectrum of PMMA-T2

Figure S8. 1H NMR spectrum of PMMA-T2 ($M_n = 5600 \text{ g mol}^{-1}$). Analysis performed in CDCl$_3$.

11. SEC-RI traces obtained for the block copolymerization of PMMA-T2 with VAc at 60°C

Figure S9. SEC-RI traces for the chain extension of PMMA-T2 with VAc at 60°C. THF eluent.
12. Evolution of VAc conversion upon block copolymerization with PMMA-T2 and PMMA-T3

![Graph showing VAc conversion over time with polymerization time, macro-CTA (2.84x10^{-5} mol L^{-1}), AIBN (0.95x10^{-5} mol L^{-1}), VAc (8x10^{-3} mol L^{-1}).]

Figure S10. Evolution of VAc conversion with polymerization time, macro-CTA (2.84x10^{-5} mol L^{-1}), AIBN (0.95x10^{-5} mol L^{-1}), VAc (8x10^{-3} mol L^{-1}). - - - - - - PMMA-T2, T = 60°C, - - - - - - PMMA-T3, T = 70°C.