Supporting Information

A Sequential Native Chemical Ligation–Thiol-Michael Addition Strategy for Polymer-Polymer Ligation

Alexander Rajakanthan,a James Town,a Paul Wilson,*a and Kristian Kempe*b

aDepartment of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom.
Email: p.wilson.1@warwick.ac.uk.
bARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
Email: kristian.kempe@monash.edu.
Experimental details and characterisation

2,2-Dimethylthiazolidine-4-carboxylic acid (Tz4CA)

![Chemical structure of Tz4CA]

Acetone, 70°C

Fig. S1. A) 1H NMR (top) and B) 13C NMR in d_6-DMSO of Tz4CA.
2,2-Dimethylthiazolidin-3-(N-formyl)-4-carboxylic acid (FTz4CA)

\[
\begin{align*}
\text{HCOONa, HCOOH} & \quad \text{Ac}_2O \\
\end{align*}
\]

Fig. S2. A) 1H NMR and B) 13C NMR in d_6-DMSO of FTz4CA.
PEG-FTz4CA (1)

\[
\text{N}-\text{O} \quad \text{O} \\
\text{S} \quad \text{N} \\
\text{O} \quad \text{H} \\
\text{O} \quad \text{O} \\
\text{O} \quad \text{O} \\
\text{N} \quad \text{H} \\
\text{N} \quad \text{H} \\
\text{O} \\
\text{O} \\
\text{CDI} \\
\text{CHCl}_3
\]

A

\[\delta / \text{ppm}\]

B

\[\delta / \text{ppm}\]
Fig. S3. A) 1H NMR and B) 13C NMR of PEG-FTz4CA (1), in d_6-DMSO; C) Enlarged MALDI-ToF-MS from Fig 1. of 1 with $D_P = 41$ corresponding to $C_{90}H_{178}N_2O_{43}S$ (Table S1).

Table S1. Molecular weight data obtained from MALDI-ToF-MS for α-methoxy-ω-functional-PEG polymers 1 – 4.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Empirical Formula</th>
<th>Adduct</th>
<th>m/z_{th}</th>
<th>m/z_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG(Amine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>$C_{84}H_{169}NO_{41}$</td>
<td>M+Na</td>
<td>1859.106</td>
<td>1859.166</td>
</tr>
<tr>
<td>1</td>
<td>$C_{90}H_{178}N_2O_{43}S$</td>
<td>M+Na</td>
<td>2030.142</td>
<td>2030.301</td>
</tr>
<tr>
<td>2</td>
<td>$C_{88}H_{174}N_2O_{42}S$</td>
<td>M+Na</td>
<td>1962.115</td>
<td>1962.119</td>
</tr>
<tr>
<td>3</td>
<td>$C_{100}H_{191}N_3O_{45}S$</td>
<td>M+Na</td>
<td>2209.236</td>
<td>2209.188</td>
</tr>
<tr>
<td>4</td>
<td>$C_{105-}H_{196}F_3N_3O_{47}S$</td>
<td>M+Na</td>
<td>2363.260</td>
<td>2363.406</td>
</tr>
</tbody>
</table>

aNumber of repeating units of PEG in the observed species composition; bDetermined by Bruker Isotope Pattern software; cDetermined by MALDI spectrum.
PEG-cysteine (2)

\[
\begin{align*}
\text{PEG-cysteine} & \xrightarrow{\text{HCl}} \text{HSNH}_2C\text{O}_2\text{H} + \text{HSNH}_2C\text{O}\text{H}_2
\end{align*}
\]
Fig. S4. A) 1H NMR and B) ^{13}C NMR of Cys_PEG (2), in d_6-DMSO; C) Enlarged MALDI-ToF-MS of 2 with DP$_n$ = 41 corresponding to $C_{86}H_{174}N_2NaO_{42}S$ (Table S1); D) Enlarged MALDI-ToF-MS of 2'.
Phenyl 2-((tert-butoxycarbonyl)amino)-3-phenylpropanethioate (BocPheSPh)

![Chemical structure of BocPheSPh](image)

Fig. S5. A) 1H NMR and B) 13C NMR of BocPheSPh in CDCl$_3$.
Native chemical ligation using BocPheSPh

The general procedure for native chemical ligation was followed using BocPheSPh as the thioester to yield 3 as a white solid.

Fig. S6. A) 1H NMR and B) 13C NMR of 3/3' in d_6-DMSO.
Fig. S7. SEC trace (THF) of 3/3’.

Fig. S8. MALDI-ToF-MS overlay showing the shift in distribution following the NCL reaction of 2/2’ (red) with BocPheSPh to form 3/3’ (blue). The 44 Da PEG repeating unit was retained (Table S1).
Fig. S9. SEC (THF) chromatograms at $t = 48h$, demonstrating the in-situ reduction of $3'$ to 3 in the presence of increasing amounts of DMPP.
Thiol-Michael addition using 2,2,2-trifluoroethyl acrylate (TFEA)

The general procedure for thiol-Michael addition was followed using 2,2,2-trifluoroethyl acrylate. The pure product 4 was isolated as a white solid.

Fig. S10. 19F NMR of TFEA (black) and thiol-ene product 4 (blue).
Fig. S11. 1H NMR of modified polymer 4 upon in-situ reduction (DMPP) and thiol-Michael addition using polymer 3 and TFEA as a model acrylate.

Fig. S12 SEC (DMF) thiol-Michael addition product 4 of the reaction between polymer 3 and TFEA.
Thiol-Michael addition using oligo(MeOx-alt-AA)$_n$A macromonomer

The general procedure for thiol-Michael addition was followed using oligo(MeOx-alt-AA)$_n$A. The pure product 5 was isolated as a white solid.

Fig. S13. (A) 1H NMR (d_6-DMSO) overlay of oligo(MeOx-alt-AA)$_n$A (MeOx_AA) before (black) and after (5, blue) thiol-ene reaction with NCL product 3; (B) SEC (THF) showing molecular weight data for 5 and the change in molecular weight distribution relative to 3.
Thiol-Michael addition using oligo(EtOx-alt-AA)$_n$A macromonomer

The general procedure for thiol-Michael addition was followed using oligo(EtOx-alt-AA)$_n$A.

The pure product 6 was isolated as a white solid.

Fig. S14. (A) 1H NMR (d_6-DMSO) overlay of oligo(MeOx-alt-AA)$_n$A (EtOx AA) before (black) and after (6, blue) thiol-ene reaction with NCL product 3; (B) SEC (THF) showing molecular weight data for 6 and the change in molecular weight distribution relative to 3.

15
Thiol-Michael addition using PEGA

The general procedure for thiol-Michael addition was followed using PEGA\textsubscript{480}. The pure product 7 was isolated as a white solid.

Fig. S15. (A) 1H NMR (\textit{d}_{6}-DMSO) overlay of PEGA\textsubscript{480} before (black) and after (7, blue) thiol-ene reaction with NCL product 3; (B) SEC (THF) showing molecular weight data for 7 and the change in molecular weight distribution relative to 3.
Synthesis of PEtO$_{30}$-COSPh, 8

Fig. S16. 1H NMR (CDCl$_3$) of PEtO$_{30}$COSPh, 8

Fig. S17. SEC (DMF) of PEtO$_{30}$COOH (black) and PEtO$_{30}$COSPh (red) showing traces collected from DRI (solid) and UV ($\lambda = 250$ nm, dashed) detectors.
Native chemical ligation using PEtOx\textsubscript{30}-COSPh

The general procedure for native chemical ligation was followed using PEtOx\textsubscript{30}-COSPh as the thioester to yield 9 as a white solid.

Fig. S18. 1H NMR (\textit{d\textsubscript{6}}-DMSO) of the 9.
Fig. S19. SEC (DMF) of $9+9'$ before (dash) and after reduction to yield 9 (solid). Low molecular weight shoulder corresponds to unreacted PEtO$_3$COSPh (8) which was not removed during dialysis against water (nMWCO = 3500 g/mol).

Thiol-Michael addition of 9 to macromonomer oligo(ButOx-alt-AA)$_n$A

The general procedure for thiol-Michael addition was followed using oligo(ButOx-alt-AA)$_n$A. The crude product was initially purified against water using a regenerated cellulose membrane (nMWCO = 3500 g/mol) which furnished a bimodal distribution (Fig. 3A, blue dash). Further purification by centrifugal filtration (nMWCO = 10000 g/mol) removed the low
molecular weight impurity (PEtOx derived from 8, $M_n \approx 3100$ g/mol) to furnish pure miktoarm star polymer 10 as a white solid (Fig. 3A, blue solid; Fig 3B).

Fig. S20. SEC (DMF) of oligo(ButOx-alt-AA)$_n$A.

![SEC (DMF) of oligo(ButOx-alt-AA)$_n$A](image)

10 crude
$M_n = 9800$ g/mol
$M_w/M_n = 1.32$

10
$M_n = 11900$ g/mol
$M_w/M_n = 1.13$

Fig. S21. SEC (DMF) of 10 before (dash) and after purification (solid). Low molecular weight shoulder corresponds to unreacted PEtOx$_{30}$COSPh (8) which was removed via centrifugal filtration (nMWCO = 10000 g/mol).