A photo-selective chain-end modification of polyacrylate-iodide and its application to patterned polymer brush synthesis

Chen Chena, Chen-Gang Wanga, Wenxun Guana,b, and Atsushi Gotoa*

aDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore

bKey Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084 P.R. China

1. Materials and Measurement

Materials. 2-Iodo-2-methylpropionitrile (CP−I) (>95%, Tokyo Chemical Industry (TCI), Japan), butyl acrylate (BA) (>97%, TCI), 2-methoxyethyl acrylate (MEA) (>98%, TCI), 1\textsubscript{H},1\textsubscript{H},2\textsubscript{H},2\textsubscript{H}-nonafluorohexyl acrylate (NFHA) (> 98%, TCI), tetrabutylammonium iodide (BNI) (>98%, TCI), 2-phenylethylamine (>98%, TCI), 1-amylamine (>98%, TCI), 3-aminopropyltriethoxysilane (>98%, TCI), 4-amino-1-butanol (>98%, TCI), propargylamine (>97%, TCI), N,N-dimethylformamide (DMF) (>99.5%, Kanto Chemical, Japan), methanol (>99%, International Scientific, Singapore), tetrahydrofuran (THF) (>99.5%, Kanto Chemical), triethylamine (TEA) (>99%, TCI), tributylamine (TBA) (>98%, TCI), 4-dimethylaminopyridine (DMAP) (>99%, TCI), fluorescein 5-isothiocyanate (FITC) (>90%, Sigma-Aldrich, United States), 1,2-ethanedithiol (>99%, TCI), 2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropio phenone (Irgacure D-2959) (98%, Sigma-Aldrich), 7-diethylamino-3-(4-
maleimidophenyl)-4-methylcoumarin (CPM) (>95%, Sigma-Aldrich), formic acid (>98%, TCI), ammonia solution (28% in water, TCI), \textit{trans}-2-[3-(4-t-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) (>99%, Fluka Chemicals, UK) and sodium trifluoroacetate (NaTFA) (>98%, TCI) were used as received. 6-(2-Iodo-2-isobutoxy)hexyltriethoxysilane (IHE) was provided through the courtesy of Godo Shigen (Japan) and was used as received. Formic-\textit{d} acid (DCOOH) (95wt% in H\textsubscript{2}O) (Sigma-Aldrich) was dried by MgSO\textsubscript{4} before use. The glass photomasks (Hunan Omnisun Information Materia, China) polished on both sides with a patterned low reflective chrome film on one side were used as received.

Analytical GPC. The GPC analysis was performed on a Shimadzu LC-2030C Plus liquid chromatograph (Kyoto, Japan) equipped with a Shodex (Tokyo, Japan) KF-804L mixed gel column (300 × 8.0 mm; bead size = 7 \(\mu \)m; pore size = 20–200 Å) and a Shodex LF-804 mixed gel column (300 × 8.0 mm; bead size = 6 \(\mu \)m; pore size = 3000 Å). The eluent was tetrahydrofuran (THF) at a flow rate of 0.7 mL/min. Sample detection was conducted using a Shimadzu differential refractometer RID-20A. The column system was calibrated with standard poly(methyl methacrylate)s (PMMA).

Preparative GPC. Polymers were purified with a preparative GPC (LC-9204, Japan Analytical Industry, Tokyo) equipped with JAIGEL 1H and 2H polystyrene gel columns (600×40 mm; bead size = 16 \(\mu \)m; pore size = 20-30 (1H) and 40-50 (2H) Å). Chloroform was used as the eluent at a flow rate of 14 mL/min (room temperature).

NMR. The NMR spectra were recorded on a BBFO400 spectrometer (400 MHz) (Bruker, Germany) at ambient temperature; spectral width 4000.00 Hz, acquisition time 8.192 sec, and pulse delay 1.000 sec.

MALDI-TOF-MS. The MALDI-TOF-MS spectra were recorded on a JMS-S3000 Spiral-TOF (JEOL Ltd., Japan) at an accelerating potential of 20 kV in the positive spiral mode. We prepared polymer solution (10 mg/mL in THF), matrix solution (\textit{trans}-2-[3-(4-t-butylphenyl)-2-...
methyl-2-propenyldiene]malononitrile (DCTB): 60 mg/mL in THF), and cationization agent solution (sodium trifluoroacetate (NaTFA): 10 mg/mL in THF). The polymer solution, the DCTB solution, and the cationization agent solution were mixed in a ratio of 1/2/1 (v/v/v). Then, 5 μL of the mixed solution was deposited on the target plate spot and dried in the air at room temperature.

Contact Angle. The water-contact angle analysis of the polymer brushes was carried out with a DM-701 contact angle meter (Kyowa Interface Science, Japan).

UV-LED light. The UV-LED light source (C11924-101) (at 365 (± 10) nm) was purchased from Hamamatsu Photonics (Japan). The energy of the irradiating light per area was measured to be 900 mW/cm² with a power meter (FieldMate, Coherent, USA).

AFM. The polymer brush thickness was determined with an atomic force microscope (AFM) (Probe Station AFM5000II, Hitachi High-Technologies, Japan) using a cantilever PRC-DF40P.
2. AFM Height Profile of Synthesized PBA-I Brushes

Fig. S1 AFM height profile in the scratched and non-scratched areas of the PBA-I brush.
3. NMR Spectra of CPS-SH

Fig. S2 (a) 1H and (b) 13C NMR spectra (DMSO-d_6) of CPS-SH.
4. Calculation of Theoretical Molecular Mass for MALDI-TOF-MS.

For example, the chemical formula of PBA-Ph with 21 BA repeating units with CP (C₄H₈N) at the
initiating chain and NHCH₂CH₂Ph (C₈H₁₀N) at the growing chain end is C₁₅₉H₂₆₈O₄₂N₂ (Fig. 1). The
theoretical molecular mass value (with the additive cation Na⁺) without ^{13}C atom is given by
159 × 12 (C) + 268 × 1.00783 (H) + 42 × 15.99491 (O) + 2 × 14.00307 (N) + 22.98977 (Na) = 2900.88

5. ^1H NMR Analysis of Reactions Using NH₂CH₂CH₂Ph with and without UV Irradiation.

Fig. 2a shows the ^1H NMR spectrum of PBA-I. From the peak areas of the terminal monomer unit
(peak c’, CH, 4.3 ppm) and the whole monomer units (peak d, OCH₂, 3.8–4.2 ppm), we calculated the
degree of polymerization (DP) to be 27. Figs. 2b and 2c show the ^1H NMR spectra of the products
obtained in the reactions of PBA-I (1 eq, 20wt%), NH₂CH₂CH₂Ph (20 eq), and HCOOH (4 eq) in the
dark and under the UV irradiation, respectively. The products were purified by preparative GPC to
remove trace amounts of NH₂CH₂CH₂Ph and other low-molecular-weight species. In the dark, the
signal of C₆H₅ (peak j, 7.1–7.4 ppm) was clearly observed, demonstrating the introduction of the
NHCH₂CH₂Ph moiety. The yield of PBA-Ph was calculated to be 88% from the relative peak areas of
C₆H₅ and the monomer units (peak d, OCH₂, 3.8–4.2 ppm) with DP = 27. Under the UV irradiation, the
yield of PBA-Ph was calculated to be 11%. Assuming that PBA-I was converted to either PBA-Ph or
PBA-H (100% in total), we calculated the yield of PBA-H to be 89% (= 100% − 11%).
6. Mechanistic Study Using Formic-\textit{d} Acid (DCOOH).

Fig. S3 shows the MALDI-TOF-MS spectrum of the product obtained in the reaction of PBA-I (20 wt\%, 1 eq), DCOOH (4 eq), and TBA (20 eq) in DMF under the UV irradiation at room temperature for 2 h. A minor signal at 2395.72 belongs to an HI elimination product from PBA-I (PBA-ene (theoretical mass value = 2395.66 (with the repeating unit \(n = 18\))) without \(^{13}\text{C}\) atom. The signal intensity was 2720, which is given in the parenthesis in the figure. The signal at 2397.73 (with the intensity of 23900) belongs to PBA-H (theoretical mass value = 2397.68 (\(n = 18\))) without \(^{13}\text{C}\) atom and PBA-ene with two \(^{13}\text{C}\) atoms (theoretical mass value = 2397.67). The signal at 2398.73 (with the intensity of 37000) belongs to PBA-D (theoretical mass value = 2398.69 (\(n = 18\))) without \(^{13}\text{C}\) atom, PBA-H with one \(^{13}\text{C}\) atom (theoretical mass value = 2398.68), and PBA-ene with three \(^{13}\text{C}\) atoms (theoretical mass value = 2398.67). Because all of PBA-ene, PBA-H, and PBA-D have the same number of carbons, the isotopic distribution is the same. The theoretical relative intensities at \(n = 18\) for zero, one, two, and three \(^{13}\text{C}\) atoms are given in Fig. S3. The experimental ratio of PBA-H/PBA-D is calculated as follows:

\[
\frac{\text{PBA-H}}{\text{PBA-D}} = \frac{23900 - \frac{2720}{69.008} \times 77.035}{37000 - \frac{23900 - \frac{2720}{69.008} \times 77.035}{69.008} \times 100 - \frac{2720}{69.008} \times 41.637} = 80/20
\]

<table>
<thead>
<tr>
<th>The number of (^{13}\text{C})</th>
<th>Theoretical intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>69.008</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>77.035</td>
</tr>
<tr>
<td>3</td>
<td>41.637</td>
</tr>
</tbody>
</table>

Fig. S3 MALDI-TOF-MS spectrum of the product obtained in a reaction of PBA-I (1 eq, 20 wt\%), DCOOH (4 eq), and TBA (20 eq) in DMF under the UV irradiation for 2 h.
7. MALDI-TOF-MS Spectra.

Fig. S4 MALDI-TOF-MS spectra of the products obtained in the reactions of PBA-I (1 eq, 20wt%), formic acid (4 eq), and NH₂CH₂C≡CH (20 eq) in DMF (a) in the dark after 2 h and (b) with the UV irradiation after 2 h (Table 1 (entry 5)).

Fig. S5 MALDI-TOF-MS spectra of the products obtained in the reactions of PMEA-I (1 eq, 20wt%), formic acid (4 eq), and NH₂CH₂CH₂Ph (20 eq) in DMF (a) in the dark after 2 h and (b) with the UV irradiation after 2 h.
8. 1H NMR Spectra

Fig. S6 1H NMR spectra of the product (in CDCl$_3$) obtained via reactions of PBA-I (1 eq, 20wt%), formic acid (4 eq), and different amines NH$_2$-R-X (20 eq) in DMF with and without UV after 2 h (Table 1 (entries 2-5)). The amine and condition (with or without UV) are given in the figure.
9. Reaction of PBA-I with FITC

A DMF solution of non-immobilized PBA-I (20 wt%, 0.075 mM, 0.5 eq), FITC (5.7 wt%, 0.15 mM, 1 eq), TBA (0.15 mM, 1 eq), and DMAP (0.15 mM, 1 eq) was heated in a reaction tube at 60 °C for 12 h. The polymer was purified with preparative GPC. Fig. S7b shows the 1H NMR spectrum of the obtained polymer. The signals of the monomer units (peaks a-g, 0.8–4.2 ppm) and FITC (peak a’-f’, 6.5–8.2 ppm) were observed. The yield of PBA-FITC was calculated to be 9% from the relative peak areas of the monomer units (peak d, OCH$_2$, 3.8–4.2 ppm) (DP = 27) and FITC (peak d’, e’ and f’, 6.5–7.0 ppm), showing that the generation of PBA-FITC was insignificant. The concentrations of FITC, TBA, and DMAP (0.15 mM for all) in this reaction (using non-immobilized PBA-I) were 5.7 times higher than those (0.026 mM for all) in the reaction on surface (using surface-immobilized PBA-I) in Fig. 4, meaning that the generation of PBA-FITC was even less significant in the reaction studied for polymer brush on surface (Fig. 4).

Fig. S7 1H NMR spectra of (a) FITC (in acetone-d$_6$) and (b) the polymer (in CDCl$_3$) obtained in a reaction of PBA-I (20 wt%, 0.075 mM, 0.5 eq), FITC (5.7 wt%, 0.15 mM, 1 eq), TBA (0.15 mM, 1 eq), and DMAP (0.15 mM, 1 eq) in DMF at 60 °C for 12 h.
10. Microscope image.

We prepared a binary patterned PNFHA-\textit{b}-PBA (squares) and PBA (wells) brush. Fig. S8 shows the microscope image. The squares (PNFHA-\textit{b}-PBA) were darker than the wells (PBA). This means that, in Fig. 5b, the darker and lighter stripes correspond to PNFHA-\textit{b}-PBA and PBA, respectively.

\textbf{Fig. S8} Optical microscope image of binary patterned PNFHA-\textit{b}-PBA and PBA-H brush using a well-shaped photomask.