SUPPORTING INFORMATION

Construction a Fenton system to achieve the in-situ H₂O₂ generation and decomposition for enhanced photocatalytic performance

Yuanguo Xu, a Jie Liu, a Meng Xie,*b Wei Wei, a Ting Zhou, a Jia Yan,c Hui Xu,c Haiyan Ji,c Huaming Li,*c Jimin Xie,a

a School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
b School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
c Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
*E-mail: xiemeng@ujs.edu.cn; lhm@ujs.edu.cn
Figure. S1 Mapping and EDS analysis of different samples: (a) 1% NFB (pH=1); (b) 1% NFB (pH=3); (c) 1% NFB (pH=7)
Figure. S2 The TEM images of 1% NFB in pH=1 (a); pH=3 (b); pH=7 (c).

Figure. S3 The XRD patterns of BiOBr and 1% NFB (pH=1, 3 and 7)
Figure. S4 Plots of $(\alpha hv)^{1/2}$ versus hv of pure BiOBr with different pH.

Figure. S5 UV−vis absorption spectra of BPA solution under different reaction time over the 1% NFB (pH=1, 3 and 7) composite materials.

Figure. S6 HPLC chromatograms of the BPA degradation by the 1% NFB (pH=1 and 7) composite materials.
Figure. S7 Cycling runs for the photodegradation of BPA in the presence of 1% NFB (pH=3) composite under visible light irradiation.

Figure. S8 Transient photocurrent response of the sample electrodes of BiOBr and 1% NFB in pH=1 (a); pH=3 (b) and pH=7 (c).
Figure. S9 Schematic illustration of partition system setup used in the photocatalytic BPA degradation.

Figure. S10 Concentration of BPA in the inner and outer of the partition system with and without catalyst.