Electronic Supplementary Information

Rapid design of core-shell-like metal hydroxide/oxide composite and activated carbon from biomass for high-performance hybrid supercapattery application

S. Chandra Sekhar, a Goli Nagaraju, a,b Bhimanaboina Ramulu, a and Jae Su Yu a *

a Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
b Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.

*Address correspondence to jsyu@khu.ac.kr
Tel: +82-31-201-3820; Fax: +82-31-204-8115
Fig. S1. (a-b) CV and GCD curves of the bare Cu$_2$O CAS electrode investigated at different scan rates and current densities, respectively. (c) Estimated areal capacity values of the bare Cu$_2$O CAS electrode.
Fig. S2. Relationship between applied scan rates and peak currents.
Fig. S3. Electrochemical performance of bare Ni(OH)$_2$ electrode. (a) CV curves and (b) GCD curves and (c) areal capacity values vs. current densities.
Fig. S3(a) shows the cyclic voltammetry (CV) curves measured at different scan rates from 1 to 10 mV s\(^{-1}\) in the potential range of 0-0.55 V. All the CV curves demonstrated two prominent redox peaks, indicating that the charge storage process in Ni(OH)\(_2\) material mainly governs the Faradaic redox reactions. Even at high scan rate of 10 mV s\(^{-1}\), the CV curve retained its shape without distortion and the redox peaks still can be observed, indicating the good reversibility of material. The galvanic charge-discharge (GCD) tests were also investigated in the fixed potential window of 0-0.55 V at different current densities (2-14 mA cm\(^{-2}\)) and plotted in Fig. S3(b). In well-agreement with the CV results, the obtained GCD plateaus with non-linear curves further confirmed the Faradaic charge storage mechanism. Based on the discharge time, the areal capacities of Ni(OH)\(_2\) material were calculated using Eq. (1). The obtained areal capacity values were 53.5, 50.2, 44.7, 41.6, 30.5 and 19.4 µAh cm\(^{-2}\) at the current densities of 2, 3, 4, 6, 10 and 14 mA cm\(^{-2}\), respectively and the obtained values were plotted against current densities in Fig. S3(c).
Fig. S4. (a) EDX spectrum and (b) elemental mapping images of Ni(OH)$_2$@Cu$_2$O particles recorded after long-term stability test. Inset in (a) shows the FE-SEM image of Ni(OH)$_2$@Cu$_2$O particles.