Supporting Information

Rapid microwave-assisted hydrothermal synthesis of CeO$_2$ octahedrons with mixed valence state and their catalytic activity for thermal decomposition of ammonium perchlorate

Jing Shi, a Huixiang Wang, b Yequn Liu, a Xiaobo Ren, b,c Haizhen Sun, a and Baoliang Lv *

a Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China

b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China

c University of Chinese Academy of Sciences, Beijing 100049, China.

* Corresponding author. Tel: +86-0351-4063121; Fax: +86-0351-4041153;

E-mail: lbl604@sxicc.ac.cn
Synthesis of CeO$_2$ cubes

0.868 g of Ce(NO$_3$)$_3$·6H$_2$O and 9.6 g of NaOH were dissolved in 5 and 35 mL of deionized water, respectively. Then, these two solutions were mixed in a Teflon bottle, and this mixture was kept stirring for 30 min with the formation of a milky slurry. Subsequently, the Teflon bottle was held in a stainless steel vessel autoclave. Finally, the autoclave was sealed and transferred into a electric oven, and was subjected to hydrothermal treatment at 180 °C for 24 h. After the hydrothermal treatment, fresh white precipitates were separated by centrifugation, washed with deionized water and ethanol several times, followed by drying at 60 °C in air overnight.

Fig. S1 SEM image (A) and XRD pattern (B) for CeO$_2$ cubes.

Fig. S2 TEM and HRTEM images of CeO$_2$ cubes: (A) the overview of typical cubes, (B) the HRTEM image of white regions in (A), inset is a fast Fourier transform (FTT) analysis.
Fig. S3 (A) SEM and (B) TEM images, (C) XRD and (D) the survey XPS patterns of recovered CeO$_2$ catalyst, the inset in (D) is the multi peak separation patterns of Ce 3d.