Supporting Information

Activity Enhancement of Layered Cobalt Hydroxide

Nanocones by Interlayer Spacing Tuning and Phosphidation

delete "†"

for Electrocatalytic Water Oxidation in Neutral solution

Ruinan Qin,^a^{*} Hao Wan,^{a,b}^{*} Xiaohe Liu, ^{*a} Gen Chen,^a Ning Zhang,^a Renzhi Ma^{*c} and Guanzhou Qiu^b delete "[†]"

^a State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China. Email: liuxh@csu.edu.cn

^b School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083, P.R. China.

 ^c International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan. Email: Ma.Renzhi@nims.go.jp

Figure S1. FT-IR spectra of layered cobalt hydroxide NCs intercalated with DS^- , NO_3^- and CH_3COO^- anions, respectively.

Electrocatalysts	Preparation method	j (mA cm ⁻²)	overpotential (mV)	Tafel slope (mV dec ⁻¹)	pH/electrolyte	Ref.
3D CoP nanoarray/Ti	oxidative polarization	5	620	293	pH=7, PBS	1
Co_3O_4 quantum dots	drop casting	10	490	80	pH=7, PBS	2
Co-P-B/rGO	drop casting	10	400	68	pH=7, PBS	3
$Co_3(BO_3)_2$ (a) CNT	drop casting	10	487	63	pH=7, KPi	4
Co ₂ P nanoparticles	electrochemical activation	1	450	129.8	pH=7, PBS	5
CoP nanoarray/carbon cloth	low-temperature phosphidation	10	536	85	pH=7, PBS	6
NaCo ₄ (PO ₄) ₃ nanoribbons	drop casting	1	373	121	pH=7, PBS	7
Co ₃ S ₄ nanosheets	drop casting	3	620	151	pH=7, PBS	8
CoP NCs	drop casting	5	539	179	pH=7, PBS	this work
NO ₃ intercalated cobalt hydroxide NCs	drop casting	5	550	178	pH=7, PBS	this work
DS ⁻ -intercalated cobalt hydroxide NCs	drop casting	1 5 10	361 500 561	172	pH=7, PBS	this work
CH ₃ COO ⁻ -intercalated cobalt hydroxide NCs	drop casting	5	540	217	pH=7, PBS	this work
				530		

Table S1. Activity comparison of electrocatalysts for water oxidation under neutral solution

Figure S2. Cyclic voltammetry (CV) curves for (a) DS^{-} , (b) NO_{3}^{-} , (c) $CH_{3}COO^{-}$ intercalated cobalt hydroxide NCs and (d) CoP NCs at incremental scan rates in the potential range of 1.15 - 1.25 V vs RHE.

Figure S3. (a) Nyquist plots of DS⁻-, NO₃⁻-, CH₃COO⁻-intercalated cobalt hydroxide NCs. Two semicircles are assigned to the charge-transfer resistance (R_{ct}) and mass-transfer resistance (R_d) in turn. The shot dashes represent the raw data and the symbol dots represent the fitting data. The inset is the equivalent circuit model.

Materials	$R_{s}(\Omega)$	$R_{ct}(\Omega)$	$R_{d}(\Omega)$				
DS ⁻ -intercalated cobalt hydroxide NCs	75.2	57.2	879.7				
NO ₃ ⁻ -intercalated cobalt hydroxide NCs	83.3	76.6	1036.0				
CH ₃ COO ⁻ -intercalated cobalt hydroxide NCs	88.3	134.8	952.3				

Table S2. The estimated values of R_s, R_{ct} and R_d.

Figure S4. XPS spectrum for post-OER CoP NCs in the Co 2p region.

Figure S5. (a) Nyquist plot and (b) chronopotentiometric curve of CoP NCs. Two semicircles are assigned to the charge transfer resistance (R_{ct}) and mass-transport resistance (R_d) in turn. R_s , R_{ct} and R_d were estimated to be 84.0, 132.1 and 778.1 Ω , respectively.

References

- (1) J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, and X. Sun. Adv. Mater. 2016, 28, 215.
- (2) L. Ma, S.-F. Hung, L. Zhang, W. Cai, H. B. Yang, H. M. Chen, and B. Liu. *Ind. Eng. Chem. Res.* 2018, 57, 1441.
- (3) P. Li, Z. Jin, and D. Xiao. J. Mater. Chem. A 2014, 2, 18420.
- (4) E. A. Turhan, S. V. K. Nune, E. Ulker, U. Sahin, Y. Dede, and F. Karadas. *Chem. -Eur. J.* 2018, **24**, 10372.
- (5) K. Xu, H. Cheng, L. Liu, H. Lv, X. Wu, C. Wu, and Y. Xie. Nano Lett. 2017, 17, 578.
- (6) T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A. M. Asiri, X. Sun, and L. Chen. ChemElectroChem. 2017, 4, 1840.
- (7) H. Wan, R. Ma, X. Liu, J. Pan, H. Wang, S. Liang, G. Qiu and T. Sasaki. ACS Energy Lett.
 2018, 3, 1254-1260.
- (8) Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou and Y. Xie. *Angew. Chem. Int. Ed.* 2015, **54**, 11231-11235.