Supporting Information

Cobalt Nanoparticles Encapsulated in Nitrogen and Oxygen Dual-Doped Carbon Matrix as High-Performance Microwave Absorbers

Sifan Zeng¹.².§, Mengyu Wang³.§, Wanlin Feng¹, Lini Zhu¹, Zhen Teng¹, Haibin Zhang¹.*, Shuming Peng¹.².*

¹ Innovation Research Team for Advanced Ceramics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China.

² Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

³ Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China

§ These authors contributed equally to this work.

* Author to whom correspondence should be addressed, E-mail: hbzhang@caep.cn, pengshuming@caep.cn.
Figure S1. The EDS spectroscopy mapping image of N elemental distribution of S900.

Figure S2. (a, c, and e) RL curves versus frequency of different absorber layer thickness, and (b, d, and f) dependence of matching thickness \((t_m) \) on matching frequency \((f_m) \) at the wavelength of \(1\lambda/4 \) and \(3\lambda/4 \) of S700, S800, and S900/paraffin mixtures, respectively.
Figure S3. The eddy current loss of S700, S800, and S900/paraffin mixtures.

Figure S4. The Cole-Cole plots of (a) S700, (b) S800, and (c) S900/paraffin mixtures.