Fe/N-doped Carbon Nanofibers with Fe₃O₄/Fe₂C Nanocrystals

Enchased as Electrocatalyst for Efficient Oxygen Reduction reaction

Mengfei Li, †a Zhenyu Xiao, †b Lili Fan,*a Fengmei Wang, b Xinxin Du, o Zixi Kang, a
Weidong Fan, a Ziyang Guo, b and Daofeng Sun a

a State Key Laboratory of Heavy Oil Processing, Institute of New Energy, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
b Key Laboratory of Eco-chemical Engineering, Taishan scholar advantage and characteristic discipline team of Eco chemical process and technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
† These authors contributed equally to this work.
E-mail addresses: lilifan@upc.edu.cn
Fig. S1 Assembly process of UPC-CMP-2 structure and photographs of UPC-CMP-2 and Fe₃O₄/Fe₂C@Fe/N/C-800 powders.
Fig. S2 Low magnification and high resolution TEM images of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-600.
Fig. S3 Low magnification and high resolution TEM images of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-700.
Fig. S4 Low magnification and high resolution TEM images of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-900.
Fig. S5 Survey XPS spectra of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-600, 700, 800 and 900.
Fig. S6 CV curves of Fe₃O₄/Fe₃C@Fe/N/C-600, 700, 800 and 900 in N₂ and O₂-saturated 0.1 M KOH–H₂O electrolyte.
Fig. S7 LSV curves of (a) N/C-800, Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 before (b) and after (c) HCl treatment.
Fig. S8 XRD patterns of Fe₃O₄/Fe₂C@Fe/N/C-800 before and after HCl treatment.
Fig. S9 TEM images of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 after HCl treatment.
Fig. S10 LSV curves of Fe₃O₄/Fe₂C@Fe/N/C-600 at different rotation rates.
Fig. S11 LSV curves of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-700 at different rotation rates.
Fig. S12 LSV curves of $\text{Fe}_3\text{O}_4/\text{Fe}_2\text{C}@\text{Fe}/\text{N}/\text{C}$-900 at different rotation rates.
Fig. S13 Nyquist plots of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 and 20 % Pt/C recorded at 1.79 V vs. RHE.
Fig. S14 (a) RRDE test of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 and (b) corresponding H$_2$O$_2$ production yields and the number of electrons transferred.
Fig. S15 TEM images of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 after 10 h chronoamperometric test.
Fig. S16 XPS spectra of (a) Fe 2p$_{3/2}$, (b) N 1s, and (c) C 1s of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 after 10 h chronoamperometric test.
Fig. S17 LSVs of (a) Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 before and after the addition of 0.01 M KSCN in 0.5 M H$_2$SO$_4$–H$_2$O electrolyte at 1600 rpm and (b) SCN$^-$ poisoned Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 in 0.1 M KOH–H$_2$O electrolyte.
Fig. S18 The OER activity of Fe$_3$O$_4$/Fe$_2$C@Fe/N/C-800 in 1 M KOH solution.