Supplementary data for

Molecular doping of CuSCN for hole transporting layer in inverted-type planar perovksite solar cells

In Su Jin,§ Ju Ho Lee,§ Young Wook Noh,§ Sang Hyun Park§ and Jae Woong Jung§*

§Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea

* Corresponding author.

Email addresses: wodndwjd@khu.ac.kr
Figure S1. Top-view SEM images of perovskite film (a) pristine CuSCN HTL and (b) 0.03 wt% F4TCNQ-doped CuSCN.

Figure S2. X-ray diffraction patterns of CuSCN with and without F4TCNQ (a) and corresponding schematic illustration of CuSCN in β-phase (brown sphere = Cu; yellow sphere = S; gray sphere = C; and blue sphere = N) (b).
Figure S3. XPS core-level signal for F1s (a), and elemental mapping of F4TCNQ (0.03 wt%)-doped CuSCN thin films by SEM (EDS) (b).

Figure S4. SEM images for CH$_3$NH$_3$PbI$_3$ layers on CuSCN (a) and on CuSCN with F4TCNQ (b), and their absorption spectra (c) and X-ray diffractograms (d).
Figure S5. Steady-state photocurrent generations under 100 mW/cm2 illumination at each maximum power point voltage for the devices employing the un-doped and the doped CuSCN.

Figure S6. Normalized PCE of devices with un-doped and doped CuSCN when stored in a glovebox.