Supporting information

Effect of Fe/Co ratio on the structure and oxygen permeability of Ca-containing composite membranes

Shu Wanga, Lei Shia, Haoqi Wanga, Zhiang Xiea, Wen Tana, Yuan Hea, Dong Yana, Mebrouka Boubecha, Huixia Luoa*

a School of Material Science and Engineering and Key Lab Polymer Composite & Functional Materials, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China

*Corresponding author/authors complete details (Telephone; E-mail:)

(+0086)-2039386124

luohx7@mail.sysu.edu.cn
Fig. S1 the Rietveld refinement pattern of the CPO-PCFCO powder after calcined at 950 °C under the air atmosphere at room temperature
Fig. S2 The XRD patterns of CPO-PCCO powder before and after calcined at 950 °C for 20 hs under Ar ambient and the decomposed powder after calcined at 950 °C for 20 h under Air ambient.
Fig. S3 The SE images of CPO-PCFCO composite membranes after sintering.
Fig. S4 The XRD patterns of CPO-PCFCO membranes after sintering.
Fig. S5 XRD patterns of fresh and spent $x = 0.6$ membrane dual phase membrane in the long-term oxygen permeation measurements with pure He as sweep gas.
Fig. S6 EDXS mappings of the cross-section view (the sweep side) of $x = 0.6$ membrane after long-term CO$_2$ stability tests.
Fig. S7 EDXS mappings of the plan view (the feed side) of $x = 0.6$ membrane after long-term CO$_2$ stability tests.