Supporting Information

A curly architectured graphitic carbon nitride (g-C_{3}N_{4}) towards efficient visible-light photocatalytic H_{2} evolution

Yuanzhi Hong, Longyan Wang, Enli Liu, Jiahui Chen, Zhiguo Wang, Shengqu Zhang, Xue Lin, Xixin Duan and Junyou Shi

*a School of Materials Science and Engineering, Beihua University, 3999 Binjiang East Road, Jilin 132013, People’s Republic of China

b School of Agriculture and Food Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, People’s Republic of China

*Corresponding authors:

jlsdlinxue@126.com (X. Lin); duanxin@hotmail.com (X. Duan); bhsjy64@163.com (J. Shi)
Figure and Table Captions

Figure S1. H$_2$ evolved rate of GCN-CLA with loading the different amount of Pt.

Figure S2. Photocatalytic H$_2$ evolved performance of GCN-CLA by loading with 3 wt% of Pt, Au and Ag.

Figure S3. Particle size distribution curves of GCN-B and GCN-CLA samples.

Figure S4. Pore size distribution plots of as-made GCN-B and GCN-CLA samples.

Figure S5. FT-IR spectra of as-prepared GCN-B, GCN-0, and GCN-1 samples.

Figure S6. Survey XPS spectra of as-fabricated GCN-B and GCN-CLA samples.

Figure S7. EIS spectra of as-synthesized GCN-0, GCN-1, and GCN-CLA samples.

Figure S8. VB-XPS spectra of GCN-B and GCN-CLA samples.

Figure S9. H$_2$ evolved rate over as-synthesized samples under full arc irradiation.

Figure S10. H$_2$ evolved rate of GCN-CLA using different amount of catalyst.

Figure S11. H$_2$ evolved rate of GCN-CLA using lactic acid, triethanolamine, methanol and ethanol as sacrificial agents.

Figure S12. H$_2$ evolved activity of GCN-CLA reaction at different temperature.

Figure S13. H$_2$ evolved activity of GCN-CLA via in-situ and pre-loading 3 wt% Pt.

Figure S14. H$_2$ evolved rate of various GCN samples vs the amount of N element.

Table S1. The C and N elements amount of GCN-B, GCN-0, GCN-1 and GCN-CLA from XPS analysis.
Figure S1. \(\text{H}_2 \) evolved rate of GCN-CLA with loading the different amount of Pt.

Figure S2. Photocatalytic \(\text{H}_2 \) evolved performance of GCN-CLA by loading with 3 wt% of Pt, Au and Ag.
Figure S3. Particle size distribution curves of GCN-B and GCN-CLA samples.

Figure S4. Pore size distribution plots of as-made GCN-B and GCN-CLA samples.
Figure S5. FT-IR spectra of as-prepared GCN-B, GCN-0, and GCN-1 samples.

Figure S6. Survey XPS spectra of as-fabricated GCN-B and GCN-CLA samples.
Figure S7. EIS spectra of as-synthesized GCN-0, GCN-1, and GCN-CLA samples.

Figure S8. VB-XPS spectra of GCN-B and GCN-CLA samples.
Figure S9. H₂ evolved rate over as-synthesized samples under full arc irradiation.

Figure S10. H₂ evolved rate of GCN-CLA using different amount of catalyst.
Figure S11. \(\text{H}_2 \) evolved rate of GCN-CLA using lactic acid, triethanolamine, methanol and ethanol as sacrificial agents.

Figure S12. \(\text{H}_2 \) evolved activity of GCN-CLA reaction at different temperature.
Figure S13. H$_2$ evolved activity of GCN-CLA via *in-situ* and pre-loading 3 wt% of Pt.

Figure S14. H$_2$ evolved rate of various GCN samples vs the amount of N element.
Table S1. The C and N elements amount of GCN-B, GCN-0, GCN-1 and GCN-CLA from XPS analysis.

<table>
<thead>
<tr>
<th>Samples</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN-B</td>
<td>42.91</td>
<td>54.07</td>
</tr>
<tr>
<td>GCN-0</td>
<td>43.30</td>
<td>53.16</td>
</tr>
<tr>
<td>GCN-1</td>
<td>43.56</td>
<td>52.67</td>
</tr>
<tr>
<td>GCN-CLA</td>
<td>44.88</td>
<td>52.31</td>
</tr>
</tbody>
</table>