Supplemental Materials:

Negative thermal expansion and the role of hybridization in perovskite-type PbTiO$_3$-Bi(Cu$_{0.5}$Ti$_{0.5}$)O$_3$

Longlong Fan,† Qiang Li,† Linxing Zhang,‡ Naike Shi,‖ Hui Liu,‖ Yang Ren,§ Jun Chen,* and Xianran Xing*†

† College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
‖ Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
¶ School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
‡ Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
§ X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
* Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

FIG. S1 Lab X-ray diffraction patterns of the (1-x)PT-xBCT powder samples in a selected short range of 2θ. The inset pattern is the change of lattice parameters and tetragonality (c/a) with the variation of Bi(Cu$_{0.5}$Ti$_{0.5}$)O$_3$ content.
FIG. S2 The temperature dependence of (a) dielectric constant and (b) relative linear expansion of (1-x)PT-xBCT ceramics (x = 0.05, 0.1, and 0.15).

FIG. S3 Rietveld fitting patterns of synchrotron powder diffraction data of tetragonal 0.85PT-0.15BCT at room temperature. Wavelength of synchrotron X-ray was 0.11538 Å. The high-angular region is enlarged and shown in the inset.
FIG. S4 Temperature dependent V_{exp}, V_{nm} and spontaneous volume ferroelectrostriction contribution of tetragonal 0.85PT-0.15BCT to NTE from ferroelectricity, ω_s. The V_{exp} is the observed unit cell volume and V_{nm} is a nominal one calculated by extrapolation from paraelectric to ferroelectric phase, ω_s is calculated as $(V_{\text{exp}}-V_{\text{nm}})/V_{\text{nm}} \times 100\%$.

FIG. S5 The evolution of minimum electron density at B-O1(Ti/Cu-O1) bonds as a function of temperature. Electron density distributions on the ac planes ($y = 1/2$) of tetragonal 0.85PT-0.15BCT from synchrotron data measured at RT is shown in inset. The 0 and 100% in color scale correspond to 0.3 and 2.3 Å$^{-3}$, respectively, and contours are from 0.3 to 2.3 Å$^{-3}$ by 0.1 Å$^{-3}$ step.