Electrode engineering begins from live biomass: a “smart” way to construct smart pregnant hybrids for sustainable charge storage devices

Jian Jiang, Siyuan Liu, Yani Liu, Ting Meng, Lai Ma, Han Zhang, Maowen Xu, Jianhui Zhu, and Chang Ming Li

School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China.

School of Physical Science and Technology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China.

To whom correspondence should be addressed: Tel: +86-23-68254842.

E-mail: jhzhu@swu.edu.cn (J. Zhu); jjiang@swu.edu.cn (J. Jiang); ccmli@swu.edu.cn (C.M.Li).

Fig. S1. N$_2$ adsorption/desorption isotherm and pore-size distribution plot of Fe$_3$O$_4$@YE-C.

Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers.

This journal is © the Partner Organisations 2019.
Fig. S2. (a-b) SEM and (c) TEM images of unclean samples after the ion-diffusion procedure. (e-f) SEM observations of remained products after an acid washing treatment toward Fe\textsubscript{3}O\textsubscript{4}@YE-C.

Fig. S3. EIS spectrum of single Fe\textsubscript{3}O\textsubscript{4}@YE-C electrode.
Fig. S4. (a-b) SEM and (c-d) TEM images of cycled Fe$_3$O$_4$@YE-C electrodes.

Fig. S5. (a) Optical, (b-c) SEM and (d-e) TEM images of Co(OH)$_2$ NWs grown on the graphite sheet. (f) CV plots, (g) constant charge/discharge profiles and (h) long-term cyclic performance of Co(OH)$_2$ NWs cathode.