Supporting information

Drastic Photoluminescence Modulation of an Organic Molecular

Crystal with High Pressure

Junjie Guan,^{a,b} Chunfang Zhang,^c Dexiang Gao,^b Xingyu Tang,^b Xiao Dong,^d Xiaohuan Lin,^b Yajie Wang,^b Xinxin Wang,^b Lin Wang,^b Hyun Hwi Lee,^e Jialiang Xu,^{*a,f} Haiyan Zheng,^{*b} Kuo Li,^b and Ho-kwang Mao^b

^a.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.

^b.Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China.

^{c.}College of Chemistry and Environmental Science, Hebei University, No.180 Wusidong Road. Baoding 071002, Hebei, China.

^d Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China.

^{e.} Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea.

^{f.}School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.

Emails: jialiang.xu@nankai.edu.cn; zhenghy@hpstar.ac.cn

Experimental results / cm ⁻¹	Calculated results / cm ⁻¹	Assignments
3048	3031	$v_{\text{C-H}(\text{SP}^2)}$ (C-H stretching)
1715	1664	<pre>ν_{c=0} (C=O stretching)</pre>
1608	1610	<pre>ν_{c=c} (C=C stretching)</pre>
1583	1588	<pre>ν_{c=c} (C=C stretching)</pre>
1501	1493	V _{C=C}
1467	1467	V _{C=C}
1446	1447	V _{C=C}
1422	1427	$eta_{ extsf{C-H}}$ (C-H in-plane bending) and $ u_{ extsf{C-H}}$
1301	1292	$v_{c=c}$ and $\beta_{c_{-H}}$
1259	1261	<i>β</i> с -н
1190	1188	<pre>ν_{c-CO-C} (C-CO-C stretching)</pre>
1155	1149	<i>β</i> с -н
1128	1111	<i>β</i> с -н
1096	1085	<i>β</i> с -н
1075	1065	$eta_{C ext{-H}}$
1025	1031	$eta_{C ext{-H}}$
964	956	γ_{C-H} (C-H out-of-plane bending)
924	914	Ус -н
907	894	Ус -н
858	842	Ус -н
845	832	Ус -н
788	785	γ_{c-c-c} (C-C-C out-of-plane bending)
760	755	γ_{c-c-c} and γ_{c-H}
736	737	ring breath
697	695	%с -н
654	649	β c -c-c
618	610	β _{c-c-c}

Table S1 Assignments of IR modes of diphenylfluorenone (DPFO) in the α -phase at 0.49 GPa, and the calculated modes by Material Studio.

Fig. S1. Pressure-induced decrease of photoluminescence intensity with a 488 nm laser (a) from 0.13 to 5.34 GPa (laser intensity: 0.0001%), and (b) from 5.93 to 11.04 GPa (laser intensity: 0.05%) (asterisk represents the jump of red-shift).

Fig. S2. IR frequency shift of DPFO as a function of pressure in the region of (a) 600-970cm⁻¹, (b)1030-1320 cm⁻¹, and (c) 1440-1640 cm⁻¹. The dotted line represents the boundary of the phase transition from the α - to γ -phase.

Fig. S3. The Rietveld refinement result of DPFO at 1.58GPa.

Fig. S4. The Rietveld refinement result of DPFO at 6.86 GPa.

Fig. S5. Pressure-induced variation of DPFO resistance (the dotted line indicates the phase transition).

Fig. S6. The selected aggregates of the α -phase and γ -phase in the Density Functional Theory (DFT) calculations at (a) 1.58 and (b) 6.86 GPa.

LUMO+2: -2.23 eV LUMO+1: -2.70 eV LUMO: -2.70 eV HOMO: -5.55 eV HOMO-1: -5.63 eV HOMO-2: -6.01 eV

Fig. S7. DFT calculated orbitals of HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1, and LUMO+2 for the selected molecular aggregates in the α -phase (1.58 GPa) and γ -phase (6.86 GPa) (isocontour = 0.02).