Supplementary Information

Trap Passivation and Efficiency Improvement of Perovskite Solar Cells by a Guanidinium Additive

Jiaxu Yaoa,b, Hui Wanga,b, Pang Wanga,b, Robert S. Gurneya,b, Akarin Intaniwetc,

Pipat Ruankhamd, Supab Choopund, Dan Liua,b*, Tao Wanga,b*

aState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China * E-mail: dliu@whut.edu.cn; twang@whut.edu.cn

bSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China

cSmart Energy and Environment Research Unit, School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand

dDepartment of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
Figure S1. The storage life time of devices without and with 0.6 wt% DAGCl additive.

Figure S2 (a,b) Surface-view SEM images of perovskite films without and with the optimized concentration of DAGCl additive. c) The statistic plot of grains size based on images a and b.
Figure S3. (a) XRD spectra of perovskite films containing different contents of DAGCl. (b) XRD spectra of films cast from precursors containing DAGCl and PbI$_2$.
Figure S4. (a) and (b) EIS measurements by applying a low voltage (0.2 v) and high voltage (1.0 v), under 1-sun illumination, without and with the optimized concentration of DAGCl additive.
Figure S5. Bode plot and Nyquist plot of PSC without additive (a, b) and with 0.6 wt% DAGCl (c, d) from IMVS testing, respectively. e) The voltage changes at different light intensity during an IMVS test.

Figure S6. Dark current–voltage curves of electron-only devices employing an n-type semiconductor PDI$_2$ to replace PCBM.