## **Supporting Information**

# Stabilized Lamellar Liquid Crystalline Phase with Aggregation-Induced Emission Features Based on Pyrrolopyrrole Derivatives

Shuangxiong Dai,<sup>a</sup> Zhengxu Cai,<sup>a</sup> Zhe Peng,<sup>a</sup> Zhi Wang,<sup>a</sup> Bin Tong,<sup>a</sup>\* Jianbing Shi,<sup>a</sup> Shenglong Gan,<sup>b</sup> Qiming He,<sup>c</sup> Wei Chen <sup>b,c</sup> and Yuping Dong <sup>a</sup>\*

<sup>*a*</sup> Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Material Science & Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China

<sup>b</sup> Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States

<sup>c</sup> Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States

\* To whom correspondence should be addressed: Phone: +86-10-6891-7390 E-mail: tongbin@bit.edu.cn, chdongyp@bit.edu.cn

#### Contents

- S1. Synthesis and characterization of the TPPP derivatives
- S2. Absorption and emission spectra of the TPPP derivatives in solid states
- **S3.** Absorption spectra of the TPPP derivatives in THF/water mixtures
- S4. Emission spectra of the TPPP derivatives in THF/water mixtures
- S5. Time-resolved PL decays spectra of the TPPP derivatives
- S6. TGA test of the TPPP derivatives
- S7. XRD patterns of TPPP-C6 and TPPP-C12 in the crystalline phase
- S8. Mesomorphic textures of TPPP-C7 and TPPP-C8
- **S9.** DSC curves of TPPP-C7 and TPPP-C8
- **S10.** Single crystal data of TPPP-C6
- S11. <sup>1</sup>H NMR, <sup>13</sup>C NMR and MALDI-MS spectra of the TPPP derivatives

#### S12. Reference

#### S1. Synthesis and characterization of TPPP derivatives

The nine TPPP derivatives were synthesized by using the known methods.<sup>1-2</sup> The concrete steps are listed as follows: In a 100 mL round-bottom flask equipped with a reflux condenser and magnetic stir bar, aniline derivative (0.023 mol), benzaldehyde (2.4 g, 0.023 mol) and TsOH (0.40 g 0.0023 mol) were dissolved with 50 mL glacial acetic acid. The mixture was stirred at 90°C for 30 min. After that time, butane-2,3-dione (0.97 g, 0.0113 mol) was slowly added. Then the reaction mixture was stirred at 90°C for extra 3 h. The faint yellow precipitate of the obtained TPPP derivatives was collected by filtration. Further purification was occurred by recrystallization from CHCl<sub>3</sub> and drying in a vacuum oven to yield a yellowish powder. (Approximate yield: 11-14%)



Scheme S1. The synthetic routes of the nine TPPP derivatives.

**TPPP-C1:** (2,5-Diphenyl-1,4-bis(4-methylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (2:1), yellowish powder, yield: 13%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.03 (d, J = 8.0 Hz, 4H), 7.32 (d, J = 8.0 Hz, 4H), 7.23 (m, 10H), 6.48 (s, 2H), 3.92 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm): 166.56, 143.80, 136.07, 133.18, 131.28, 130.70, 128.44, 128.34, 127.03, 126.77, 124.42, 96.47, 52.20. MALDI-MS (m/z): calcd. for C<sub>34</sub>H<sub>26</sub>N<sub>2</sub>O<sub>4</sub>: 526.19. Found: 526.20 (M<sup>+</sup>). **TPPP-C2:** (2,5-Diphenyl-1,4-bis(4-ethylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (2:1), yellowish powder, yield: 14%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.04 (d, J = 8.0 Hz, 4H), 7.33 (d, J = 8.0 Hz, 4H), 7.24 (m, 10H), 6.47 (s, 2H), 4.38 (q, J = 8.0 Hz, 4H), 1.39 (t, J = 4.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm): 166.09, 143.72, 136.06, 133.20, 131.29, 130.65, 128.43, 128.33, 127.39, 126.74, 124.39, 96.41, 61.05, 14.36. MALDI-MS (m/z): calcd. for C<sub>36</sub>H<sub>30</sub>N<sub>2</sub>O<sub>4</sub>: 554.22. Found: 554.67 (M<sup>+</sup>). **TPPP-C3:** (2,5-Diphenyl-1,4-bis(4-propylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (3:1), yellowish powder, yield: 14%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.04 (d, J = 8.0 Hz, 4H), 7.32 (d, J = 8.0 Hz, 4H), 7.24 ((m, 10H), 6.47 (s, 2H), 4.28 (t, J = 8.0 Hz, 4H), 1.80 (m, 4H), 1.03 (t, J = 4.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm): 166.15, 143.72, 136.06, 133.20, 131.30, 130.66, 128.43, 128.33, 127.41, 126.74, 124.40, 96.43, 66.65, 22.15, 10.55. MALDI-MS (m/z): calcd. for C<sub>38</sub>H<sub>34</sub>N<sub>2</sub>O<sub>4</sub>: 582.25. Found: 582.10 (M<sup>+</sup>).

**TPPP-C4:** (2,5-Diphenyl-1,4-bis(4-butylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (5:1), yellowish powder, yield: 13%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.04 (d, J = 8.0 Hz, 4H), 7.33 (d, J = 8.0 Hz, 4H), 7.23 (m, 10H), 6.47 (s, 2H), 4.33 (t, J = 4.0 Hz, 4H), 1.75 (m, 4H), 1.48 (m, 4H), 0.99 (t, J = 4.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm): 166.16, 143.72, 136.06, 133.20, 131.30, 130.65, 128.44, 128.33, 127.41, 126.74, 124.39, 96.43, 64.94, 30.82, 19.30, 13.78. MALDI-MS (m/z): calcd. for C<sub>40</sub>H<sub>38</sub>N<sub>2</sub>O<sub>4</sub>: 610.28. Found: 610.81 (M<sup>+</sup>).

**TPPP-C5:** (2,5-Diphenyl-1,4-bis(4-amylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (6:1), yellowish powder, yield: 12%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.03 (d, J = 8.0 Hz, 4H), 7.28 (d, J = 8.0 Hz, 4H), 7.23 (m, 10H), 6.47 (s, 2H), 4.31 (t, J = 8.0 Hz, 4H), 1.77 (m, 4H), 1.41 (m, 8H), 0.94 (t, J = 8.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm): 166.15, 143.72, 136.06, 133.21, 131.31, 130.66, 128.44, 128.34, 127.43, 126.74, 124.40, 96.44, 65.25, 28.48, 28.23, 22.39, 14.00. MALDI-MS (m/z): calcd. for C<sub>42</sub>H<sub>42</sub>N<sub>2</sub>O<sub>4</sub>: 638.31. Found: 638.31 (M<sup>+</sup>).

**TPPP-C6:** (2,5-Diphenyl-1,4-bis(4-hexylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (6:1), yellowish powder, yield: 11%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.03 (d, J = 8.0 Hz, 4H), 7.32 (d, J = 8.0 Hz, 4H), 7.24 (m, 10H), 6.47 (s, 2H), 4.31 (t, J = 8.0 Hz, 4H), 1.76 (m, 4H), 1.45 (m, 4H), 1.34 (m, 8H), 0.91 (t, J = 4.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm): 166.17, 143.70, 136.05, 133.20, 131.29, 130.66, 128.44, 128.33, 127.41, 126.74, 124.39, 96.44, 65.27, 31.50, 28.73, 25.76, 22.58, 14.05. MALDI-MS (m/z): calcd. for C<sub>44</sub>H<sub>46</sub>N<sub>2</sub>O<sub>4</sub>: 666.35. Found: 666.09 (M<sup>+</sup>).

**TPPP-C7:** (2,5-Diphenyl-1,4-bis(4-heptylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (8:1), yellowish powder, yield: 11%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.03 (d, J = 8.0 Hz, 4H), 7.33 (d, J = 8.0 Hz, 4H), 7.23 (m, 10H), 6.48 (s, 2H), 4.31 (t, J = 8.0 Hz, 4H), 1.77 (t, J = 8.0 Hz, 4H), 1.35 (m, 16H), 0.90 (t, J = 8.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm): 166.17, 143.70, 136.05, 133.20, 131.29, 130.66, 128.44, 128.33, 127.41, 126.74, 124.39, 96.44, 65.28, 31.76, 29.00, 28.78, 26.06, 22.63, 14.10. MALDI-MS (m/z): calcd. for C<sub>46</sub>H<sub>50</sub>N<sub>2</sub>O<sub>4</sub>: 694.38. Found: 694.92 (M<sup>+</sup>).

**TPPP-C8:** (2,5-Diphenyl-1,4-bis(4-octylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (8:1), yellowish powder, yield: 12%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.03 (d, J = 8.0 Hz, 4H), 7.32 (d, J = 8.0 Hz, 4H), 7.24 (m, 10H), 6.47 (s, 2H), 4.31 (t, J = 8.0 Hz, 4H), 1.76 (m, 4H), 1.44 (t, J = 8.0 Hz, 4H), 1.31 (m, 16H), 0.88 (t, J = 4.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm): 166.16, 143.70, 136.05, 133.20, 131.29, 130.66, 128.44, 128.33, 127.41, 126.74, 124.39, 96.43, 65.28, 31.82, 29.28, 29.22, 28.77, 26.08, 22.67, 14.12. MALDI-MS (m/z): calcd. for C<sub>48</sub>H<sub>54</sub>N<sub>2</sub>O<sub>4</sub>: 722.41. Found: 722.92 (M<sup>+</sup>).

**TPPP-C12:** (2,5-Diphenyl-1,4-bis(4-dodecylbenzoat)-1,4-dihydropyrrolo[3,2-b]-pyrrole). PE/EA (10:1), yellowish powder, yield: 12%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.03 (d, *J* = 8.0 Hz, 4H), 7.32 (d, *J* = 8.0 Hz, 4H), 7.24 (m, 10H), 6.47 (s, 2H), 4.31 (t, *J* = 8.0 Hz, 4H), 1.76 (m, 4H), 1.43 (m, 4H), 1.36 (m, 32H), 0.88 (t, *J* = 4.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : (ppm):166.16, 143.70, 136.05, 133.20, 131.29, 130.66, 128.44, 128.33, 127.41, 126.74, 124.39, 96.43, 65.28, 31.93, 29.67, 29.62, 29.56, 29.37, 29.33, 28.77, 26.08, 22.71, 14.14. MALDI-MS (m/z): calcd. for C<sub>56</sub>H<sub>70</sub>N<sub>2</sub>O<sub>4</sub>: 834.53. Found: 834.42 (M<sup>+</sup>).



S2. Absorption and emission spectra of the TPPP derivatives in solid states

**Fig. S1 (a)** Normalized UV-vis absorption spectra of the TPPP derivatives in solid states; **(b)** Normalized fluorescence spectra of the TPPP derivatives in solid states.



## S3. Absorption spectra of the TPPP derivatives in THF/water mixtures



Fig. S2. UV-vis absorption spectra of the nine TPPP derivatives in THF/water mixtures with different water fractions ( $f_w$ ). Concentration:  $1 \times 10^{-5}$  M.



S4. Emission spectra of the TPPP derivatives in THF/water mixtures





Fig. S3. Fluorescence spectra of the TPPP derivatives in THF/water mixtures with different water fractions (left); Plot of wavelength and the ratio of maximum fluorescence intensity of the TPPP derivatives vs. water fraction (right).  $I_0$  = emission intensity in pure THF solution. Excitation wavelength: 322 nm, concentration: 1 × 10<sup>-5</sup> M.

## S5. Time-resolved PL decays spectra of the TPPP derivatives







Fig. S4. Time-resolved PL decays spectra of the nine TPPP derivatives measured in THF solution ( $1 \times 10^{-5}$  M) and solid states. All profiles were taken at room temperature.

#### **S6. TGA test of the TPPP derivatives**



Fig. S5. TGA thermograms of the TPPP derivatives measured under nitrogen at a heating rate of 10°C/min.

# S7. XRD patterns of TPPP-C6 and TPPP-C12 in the crystalline phase



Fig. S6. XRD patterns of TPPP-C6 and TPPP-C12 in the crystalline phase.

#### **S8.** Mesomorphic textures of TPPP-C7 and TPPP-C8



**Fig. S7.** Mesomorphic textures of **TPPP-C7** and **TPPP-C8** observed on cooling to 103°C and 87°C, respectively. On heating, no LC phase was detected. On cooling, LC phase was observed from their isotropic states at a cooling rate of 0.5°C/min. All textures were taken after application of a shearing force and the polarizer was in the crossed position.

#### S9. DSC curves of TPPP-C7 and TPPP-C8



Fig. S8. DSC curves of TPPP-C7 and TPPP-C8 recorded under nitrogen during the first cooling and second heating

cycles with a scan rate of  $5^{\circ}C/min$ .

# S10. Single crystal data of TPPP-C6

| Identification code                   | TPPP-C6                                            |
|---------------------------------------|----------------------------------------------------|
| Empirical formula                     | $C_{44}H_{46}N_2O_4$                               |
| Formula weight                        | 666.83                                             |
| Temperature/K                         | 153.15                                             |
| Crystal system                        | triclinic                                          |
| Space group                           | P-1                                                |
| a/Å                                   | 6.3304(13)                                         |
| b/Å                                   | 7.2037(14)                                         |
| c/Å                                   | 20.473(4)                                          |
| $\alpha/^{\circ}$                     | 89.41(3)                                           |
| β/°                                   | 89.13(3)                                           |
| γ/°                                   | 76.08(3)                                           |
| Volume/Å <sup>3</sup>                 | 906.1(3)                                           |
| Ζ                                     | 1                                                  |
| $\rho_{calc}g/cm^3$                   | 1.222                                              |
| μ/mm <sup>-1</sup>                    | 0.078                                              |
| F(000)                                | 356.0                                              |
| Crystal size/mm <sup>3</sup>          | 0.21 	imes 0.2 	imes 0.13                          |
| Radiation                             | MoKa ( $\lambda = 0.71073$ )                       |
| $2\theta$ range for data collection/° | 5.826 to 54.968                                    |
| Index ranges                          | $-8 \le h \le 8, -9 \le k \le 9, -26 \le l \le 26$ |
| Reflections collected                 | 12409                                              |
| Independent reflections               | 4138 [ $R_{int} = 0.0704$ , $R_{sigma} = 0.0752$ ] |
| Data/restraints/parameters            | 4138/0/227                                         |
| Goodness-of-fit on F <sup>2</sup>     | 1.155                                              |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0638, wR_2 = 0.1427$                      |
| Final R indexes [all data]            | $R_1 = 0.0715, wR_2 = 0.1476$                      |
| Largest diff. peak/hole / e Å-3       | 0.25/-0.24                                         |

Table S1. Single crystal data of TPPP-C6.







Fig. S10. <sup>13</sup>C NMR spectra of TPPP-C1 in CDCl<sub>3</sub>.



Fig. S11. MALDI-MS spectra of TPPP-C1.



Fig. S12. <sup>1</sup>H NMR spectra of TPPP-C2 in CDCl<sub>3</sub>.



Fig. S13. <sup>13</sup>C NMR spectra of TPPP-C2 in CDCl<sub>3</sub>.



Fig. S14. MALDI-MS spectra of TPPP-C2.







Fig. S16. <sup>13</sup>C NMR spectra of TPPP-C3 in CDCl<sub>3</sub>.



Fig. S17. MALDI-MS spectra of TPPP-C3.



Fig. S18. <sup>1</sup>H NMR spectra of TPPP-C4 in CDCl<sub>3</sub>.



Fig. S19. <sup>13</sup>C NMR spectra of TPPP-C4 in CDCl<sub>3</sub>.



Fig. S20. MALDI-MS spectra of TPPP-C4.



Fig. S21. <sup>1</sup>H NMR spectra of TPPP-C5 in CDCl<sub>3</sub>.



Fig. S22. <sup>13</sup>C NMR spectra of TPPP-C5 in CDCl<sub>3</sub>.



Fig. S23. MALDI-MS spectra of TPPP-C5.



Fig. S24. <sup>1</sup>H NMR spectra of TPPP-C6 in CDCl<sub>3</sub>.



Fig. S25. <sup>13</sup>C NMR spectra of TPPP-C6 in CDCl<sub>3</sub>.



Fig. S26. MALDI-MS spectra of TPPP-C6.







Fig. S28. <sup>13</sup>C NMR spectra of TPPP-C7 in CDCl<sub>3</sub>.



Fig. S29. MALDI-MS spectra of TPPP-C7.



Fig. S30. <sup>1</sup>H NMR spectra of TPPP-C8 in CDCl<sub>3</sub>.



Fig. S31. <sup>13</sup>C NMR spectra of TPPP-C8 in CDCl<sub>3</sub>.



Fig. S32. MALDI-MS spectra of TPPP-C8.







Fig. S34. <sup>13</sup>C NMR spectra of TPPP-C12 in CDCl<sub>3</sub>.



Fig. S35. MALDI-MS spectra of TPPP-C12.

## S12. References

- 1 M. Krzeszewski, B. Thorsted, J. Brewer and D. T. Gryko, J. Org. Chem., 2014, 79, 3119-3128.
- 2 M. Krzeszewski, D. Gryko and D. T. Gryko, Acc. Chem. Res., 2017, 50, 2334-2345.