Supporting Information

Layer-By-Layer Growth in Solution Deposition of Monocrystalline Lead Sulfide Thin Films on GaAs(111)

Tzvi Templeman¹, Maayan Perez¹, Ofir Friedman¹, Ran Eitan Abutbul¹, Michael Shandalov², Vladimir Ezersky¹, Oleg Konovalov³ and Yuval Golan¹*

Supplementary Figure 1. **AFM surface topography images**: Typical AFM line profiles taken in air from the following samples: (top row) epi ready GaAs(111) wafer, (second row) PbS, 3 min growth duration and (third row) PbS, 11 min growth duration.
Supplementary Figure 2. Schematic illustrations of the custom-built fluid cell used for in-situ GIXD characterization at ESRF ID-10. (a) Cell overview and (b) Cell section.

Scattering model for VW (3D) growth

In the model of polycrystalline nucleation and growth, the film thickness t is composed of an assembly of M small single crystals having N repetition of $d_{(111)}$ arranged along z direction:

$$(1) \quad t = N \cdot d_{(111)} \cdot M$$

Scattering intensity of individual crystals is proportional to N^2, as described in the main text, and the incoherent sum of scattering intensity from crystallites along the film thickness results in

$$(2) \quad I_{\Sigma} = \sum_{i=1}^{M} I = I_S \cdot N^2 \cdot M$$
From (2) one can conclude the linear dependency of the intensity vs. film thickness.

Error calculations

Thickness:

Thickness is estimated from the formula

\[I = I_0 \exp(-z/\tau) \Rightarrow z = \tau \ln(I_0) - \ln(I) \]

Intensity error

\[\Delta I = \sqrt{I} \]

Following the theory of errors

\[\Delta z = \sqrt{\left(\frac{\partial z}{\partial \tau} \Delta \tau \right)^2 + \left(\frac{\partial z}{\partial I_0} \Delta I_0 \right)^2 + \left(\frac{\partial z}{\partial I} \Delta I \right)^2} = \sqrt{\left(\tau \ln(I_0) - \ln(I) \right)^2 + \tau^2 \frac{\Delta I_0}{I_0}^2 + \tau^2 \frac{\Delta I}{I}^2} \]

\[\frac{\Delta I}{I} \sim 3\% \quad \text{and} \quad \Delta \tau \to 0 \]

We can write

\[\Delta z = \tau \cdot 0.03 \cdot \sqrt{2} \approx \tau \cdot 0.04 \]

Assuming \(\tau \sim 4 \text{ nm} \), then \(\Delta z \approx 0.17 \text{ nm} \)

Thus we can say that the minimum of \(\Delta z \) is \(0.2 \text{ nm} \).
In-plane coherence length:

\[L_{xy} = 0.9 \frac{2\pi}{fwhm_{q_{xy}}} \]

\[\Delta L_{xy} = \sqrt{\left(\frac{\partial L_{xy}}{\partial fwhm_{q_{xy}}} \Delta fwhm_{q_{xy}} \right)^2} = \frac{L_{xy}}{fwhm_{q_{xy}}} \cdot \Delta fwhm_{q_{xy}} \]

Width error taken from measurement resolution, \(\Delta fwhm_{q_{xy}} = 1.1 \cdot 10^{-3} \text{nm}^{-1} \)

resulting in a maximum value of \(\Delta L_{xy} \approx 5 \text{nm} \)

Similarly for spacing:

\[d = \frac{2\pi}{q} \]

\[\Delta d = \sqrt{\left(\frac{\partial d}{\partial q} \Delta q \right)^2} = \frac{d}{q} \cdot \Delta q \approx 4 \cdot 10^{-4} \text{nm} \]
Methods

Materials and Chemicals
Sodium hydroxide (Gadot, AR), lead nitrate (Aldrich, analytical 99.99+%%) and thiourea (Aldrich, ACS≥99.0%) were used without further purification. Single crystal GaAs(111)A substrates were purchased from AXT (epi-polished, undoped, ±0.1° miscut). The films were deposited from a solution with a final composition of 30 mM lead nitrate, 50mM thiourea and 1.2M sodium hydroxide at a final pH > 14. For ex-situ experiments, films were deposited in a thermostatic bath into which a 50 ml Pyrex beaker was placed. The beaker was equipped with a custom-built Teflon stage for mounting the substrates. The substrates were placed epi-side down in the solution, at an angle of ca. 70° with respect to the air–solution interface. The beaker was covered using a glass Petri dish. Under these conditions a linear growth regime is obtained up to a duration of 2hr after which saturation impedes continuous film growth. Note that several minutes after reaction initiation homogenous precipitation is observed within the beaker.

Structural and Chemical Characterization

X-Ray Diffraction (XRD)
The crystallographic phase and texture of the films were studied by XRD. A Panalytical Empyrean diffractometer equipped with a PIXcel linear detector and monochromator on diffracted beam was used. Data were collected in the 2θ/θ geometry using Cu Kα radiation (λ = 0.15405 nm) at 40 kV and 30 mA. Diffraction scans were taken during 8 minutes in a 2θ range of 20-65° with a step size of ~0.033°. Rocking curves were obtained using a parabolic X-ray mirror for Cu Kα radiation installed on the incident beam, providing a quasi-parallel beam with divergence less than 0.05 of a degree.
Field Emission Gun Scanning Electron Microscopy (FEG-SEM)

The morphology of the films was observed using an ultrahigh resolution JEOL JSM-7400F FEG-SEM without coating of the surface. Acceleration voltage was 3.5 kV and signal was collected using an in-lens secondary electron detector. Film thickness was measured from cleaved cross sections (X-sec) while surface topography was observed in plan-view.

Transmission Electron Microscopy (TEM)

Cross sections were prepared by cutting the sample into slices normal to the interface and gluing them together face-to-face using M-Bond 610 adhesive (Allied HighTech Ltd.). The samples were polished with a precision small-angle tripod holder on a series of diamond polishing papers (Allied HighTech Ltd) until a nominal thickness of 30μm was achieved, and glued to a Mo slot grid (1×2 mm²). Final thinning was done by Ar ion milling using a Gatan PIPS-2 precision ion polishing system. TEM, HAADF STEM and HRTEM were carried out using a JEOL JEM-2100F instrument operating at 200kV.

Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) measurements were performed in AC-mode with an MFP-3D AFM from Asylum Research (Oxford Instruments). Analyses were performed on 1X1 μm² scans obtained at a scan rate of 1.5 Hz.

XPS

An ESCALAB 250 spectrometer with a monochromatic Al X-ray source (excitation energy 1486.6 eV) at a base pressure of 1×10⁻⁹ mbar was used for XPS measurements. Wide-scan survey spectrum for all elements and high-resolution spectra of selected elements were recorded.

GIXD Characterization
X-ray scattering measurements were performed at ID10 beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble, France), which is especially designed for studies of liquid-solid interfaces using GIXD. A beamstop was used for detector protection in the position of direct and specularly reflected beams. GIXD data were obtained using monochromatic X-rays with an energy of 22 keV. The 2D GIXD patterns were recorded with a Pilatus 300k detector (487x619 pixels with a pixel size 172x172 μm²) from Dectris (Baden, Switzerland) at a distance of 284 mm from the sample. The beam grazing angle was 0.08°, 80% of the GaAs critical angle (0.1°), and 67% of the PbS critical angle (0.12°). Phi scan rate was 0.02 [deg/sec].