Tunable Circularly Polarized Luminescence from Molecular Assemblies of Chiral AIEgens

Fengyan Song1,2, Yanhua Cheng3*, Qiuming Liu2, Zijie Qiu1,2, Jack W. Y. Lam1,2, Liangbin Lin4, Fafu Yang4*, and Ben Zhong Tang1,2,5*

1. Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

2. HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China

3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, China

4. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P.R. China

5. NFSC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Table of Contents

1. Experimental procedures---3

2. Photophysical data ---11

3. Chiroptical data in aggregate suspension ---13

4. Scanning electron microscopy of DPCE-ECh and DPCE-ACh-------------------------------21

5. Dynamic CD and UV spectra of DPCE-ECh and DPCE-ACh in suspension--------------------25

6. Condensed phase data and chiroptical data for neat film of DPCE-ACh-----------------25

7. Condensed phase data and chiroptical data for neat film of DPCE-ECh------------------32

8. References---42
1. Experimental procedures

Compounds 1, 5 and 6 were prepared according to previously reported synthetic procedures and showed identical spectroscopic properties to those reported therein.\[S1\]

![Scheme S1. Synthetic routes of DPCE-ECh and DPEH-ACh based on chiral AIEgens.](image)

1.1. NMR spectra and MS spectra

![Figure S1. 1H NMR spectrum of compound 2 in CDCl$_3$](image)
Figure S2. 13C NMR spectrum of compound 2 in CDCl$_3$

Figure S3. Mass spectrum of compound 2
Figure S4. 1H NMR spectrum of compound 3 in CDCl$_3$

Figure S5. 13C NMR spectrum of compound 3 in CDCl$_3$
Figure S6. Mass spectrum of compound 3

Figure S7. 1H NMR spectrum of compound 4 in CDCl$_3$
Figure S8. 13C NMR spectrum of compound 4 in CDCl$_3$

Figure S9. Mass spectrum of compound 4
Figure S10. 1H NMR spectrum of DPCE-ECh in CDCl$_3$

Figure S11. 13C NMR spectrum of DPCE-ECh in CDCl$_3$
Figure S12. The HR-ESI-MS spectrum of DPCE-ECh.

Figure S13. 1H NMR spectrum of DPCE-ACh in CDCl$_3$
Figure S14. 13C NMR spectrum of DPCE-ACh in CDCl$_3$.

Figure S15. The HR-ESI-MS spectrum of DPCE-ACh.
Figure S16. TGA curves of DPCE-ECh and DPCE-ACh.

2. Photophysical data

Figure S17. (A) UV-Vis absorption and (B) photoluminescence (PL) spectra of DPCE-ECh and DPCE-ACh in THF at room temperature. Concentration: 10 μM.
Table S1. Photophysical Properties of Chiral AIEgens^a

<table>
<thead>
<tr>
<th>AIEgens</th>
<th>Solution</th>
<th>Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λ_{abs}</td>
<td>λ_{em}</td>
</tr>
<tr>
<td></td>
<td>[nm]</td>
<td>[nm]</td>
</tr>
<tr>
<td>DPCE-ECh</td>
<td>360</td>
<td>430</td>
</tr>
<tr>
<td>DPCE-ACh</td>
<td>352</td>
<td>430</td>
</tr>
</tbody>
</table>

^aAbbreviation: λ_{abs} = absorption maximum; λ_{em} = emission maximum; $\Phi_{F, S}$ and $\Phi_{F, P}$ = fluorescence quantum yield in solution and solid powder, respectively; τ (ns) = fluorescence lifetime.

Figure S18. (A-C), PL spectra (A), Plots of the relative PL intensity peak intensity (I/I_0) versus the composition of the THF/H$_2$O mixture of DPCE-ECh (B), and fluorescent photographs of DPCE-ECh in THF/H$_2$O mixtures with different f_w (C).
Figure S19. (A-B), PL spectra (A), Plots of the relative PL intensity peak intensity (I/I_0) versus the composition of the THF/H$_2$O mixture of DPCE-ACh (B), and fluorescent photographs of DPCE-ACh in THF/H$_2$O mixtures with different f_w (C).

3. Chiroptical data in aggregate suspension.

Figure S20. (A, B) CD spectra of DPCE-ECh (A) and DPCE-ACh (B) in THF (50 µM).
Figure S21. (A, B) CD spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of THF and H$_2$O (50 µM, $f_w = 20 \%$).

Figure S22. (A, B) CD spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of THF and H$_2$O (50 µM, $f_w = 30 \%$).
Figure S23. (A, B) CD spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of THF and H₂O (50 μM, f_w = 40 %).

Figure S24. (A, B) CD spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of THF and H₂O (50 μM, f_w = 50 %).
Figure S25. (A, B) CD spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of THF and H$_2$O (50 µM, $f_w = 60\%$).

Figure S26. (A, B) CD spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of THF and H$_2$O (50 µM, $f_w = 70\%$).
Figure S27. (A, B) CD spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of THF and H₂O (50 µM, f_w = 80 %).

Figure S28. (A, B) CD spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of THF and H₂O (50 µM, f_w = 90 %).
Figure S29. (A, B) CPL spectra of DPCE-ECh (A), DPCE-ACh (B) in a solution of THF (50 μM).

Figure S30. (A, B) CPL spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of and H₂O (50 μM, f_w = 40 %).
Figure S31. (A, B) CPL spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of and H₂O (50 µM, f_w = 50 %).

Figure S32. (A, B) CPL spectra of DPCE-ECh (A), DPCE-ACh (B) and in a mixture solution of and H₂O (50 µM, f_w = 60 %).
Figure S33. (A, B) CPL spectra of DPCE-ECh (A), DPCE-ACh (B) and in a mixture solution of and H$_2$O (50 μM, $f_w = 70\%$).

Figure S34. (A, B) CPL spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of and H$_2$O (50 μM, $f_w = 80\%$).
Figure S35. (A, B) CPL spectra of DPCE-ECh (A), DPCE-ACh (B) in a mixture solution of and H₂O (50 μM, $f_w = 90\%$).

4. Scanning electron microscopy of DPE-CHOL and DPEH-CHOL.

Figure S36. SEM images of DPCE-ECh obtained from THF/H₂O mixture at $f_w = 40\%$ (A), 60\% (B)
and 90% (C).

Figure S37. SEM images of DPCE-ACh obtained from THF/H₂O mixture at $f_w = 40\%$.

Figure S38. SEM images of DPCE-ACh obtained from THF/H₂O mixture at $f_w = 50\%$.
Figure S39. SEM images of DPCE-ACh obtained from THF/H$_2$O mixture at $f_w = 60\%$.

Figure S40. SEM images of DPCE-ACh obtained from THF/H$_2$O mixture at $f_w = 90\%$.
5. Dynamic UV spectra of DPCE-ACh in suspension.

![Dynamic UV spectra of DPCE-ACh in suspension.](image)

Figure S41. Temperature-dependent UV/Vis spectral changes for DPCE-ACh in THF/H$_2$O when f$_w$ = 60%. Conditions: solution concentration: 1×10$^{-5}$ M.

6. Condensed phase data and chiroptical data for neat film of DPCE-ACh
Figure S42. Phase transition of DPCE-ACh as determined from the first cooling (upper columns). DSC scans with rate 5 K min⁻¹. Abbreviation: Cry = solid crystal; S+H: smectic + hexagonal columnar phase; S: smectic phase; iso: isotropic liquid. DSC scans of the second heating and first cooling of DPCE-ECh (5 °C/min, lower picture).

Heating Process

Cooling Process
Figure S43. Polarized optical microscopy (POM) images of DPCE-ACh under crossed polarizers during heating and cooling process (rate: 10 °C/min).

Figure S44. 1D wide angle X-ray diffraction (1D WAXD) pattern of DPCE-ACh on the 1st heating process in different temperature. $2\theta = 2^\circ - 35^\circ$.
Figure S45. 1D wide angle X-ray diffraction (1D WAXD) pattern of DPCE-ACh on the 1st cooling process in different temperature. $2\theta = 2^\circ - 10^\circ$.
Figure S46. 1D wide angle X-ray diffraction pattern of DPCE-ACh recorded during the 1st cooling scan at different temperature. (A) $2\theta = 2^\circ - 10^\circ$, (B) $2\theta = 2^\circ - 3.5^\circ$. (C) SAXS profiles of DPCE-ACh with two possible indexations of lamellae and hexagonal array. The data was recorded at 150 °C during the 1st cooling scan.

Figure S47. CD spectra of front and back sides of DPCE-ACh films annealed for 45 min at different temperatures at different rotation angles perpendicular to the light axis. (A) 150 °C (B) 180 °C (C) 190 °C. The film thickness of DPCE-ACh is 50 nm for CD detection.
Figure S48. UV spectra of front and back sides of DPCE-ACh films annealed at different temperatures for 45 min.

Figure S49. g_{CD} (415 nm) of DPCE-ACh films annealed for 45 min at temperature of 150-190 °C.
Figure S50. CPL spectra of DPCE-ACh films annealed at 180 °C for 45 min at different rotation angles perpendicular to the light axis (front side).
Figure S51. CPL spectra of DPCE-ACh films annealed 180 °C for 45 min at different rotation angles perpendicular to the light axis (back side).
7. Condensed phase data and chiroptical data for neat film of DPCE-ECh.

Figure S52. Polarized optical microscopy (POM) images of DPCE-ECh under crossed polarizers.

Figure S53. 1D wide angle X-ray diffraction (1D WAXD) pattern of DPCE-ECh on the 2nd heating process in different temperature. (A) $2\theta = 2^\circ – 35^\circ$, (B) $2\theta = 2^\circ – 6^\circ$.
Figure S54. 1D wide angle X-ray diffraction (1D WAXD) pattern of DPCE-ECh on the 1st cooling process in different temperature. (A) $2\theta = 2^\circ - 35^\circ$, (B) $2\theta = 2^\circ - 6^\circ$.

Figure S55. SAXS patterns at different temperatures. Inset: POM image of DPCE-ECh at 100 °C.
Figure S56. The illustration of the shearing geometry

Table S2. The measurement conditions of WAXS and SAXS.

<table>
<thead>
<tr>
<th></th>
<th>WAXS</th>
<th>SAXS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDD</td>
<td>225.831 nm</td>
<td>1219.49 mm</td>
</tr>
<tr>
<td>Beam Size</td>
<td>0.8 × 0.8 mm²</td>
<td>0.8 × 0.8 mm²</td>
</tr>
<tr>
<td>Beam Center</td>
<td>623.176, 923.1842</td>
<td>620.132, 918.9432</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.172 × 0.172 mm²</td>
<td>0.172 × 0.172 mm²</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.134144 nm</td>
<td>0.134144 nm</td>
</tr>
<tr>
<td>Virtual Detector Mode</td>
<td>4 images combined</td>
<td>4 images combined</td>
</tr>
<tr>
<td>Exposure Time</td>
<td>1800 s × 4</td>
<td>1800 s × 4</td>
</tr>
</tbody>
</table>
Figure S57. CD spectra of front and back sides of DPCE-ECh films annealed at different temperatures for 45 min recorded at different rotation angles perpendicular to the light axis. (A) 70 °C (B) 80 °C (C) 90 °C (D) 100 °C (E) 110 °C (F) 120 °C. The film thickness of DPCE-ECh is 50 nm for CD detection.

Figure S58. Diagram of molecular assembly orientation for circularly Bragg phenomenon and non-circularly Bragg phenomenon.
Figure S59. UV spectra of front and back sides of DPCE-ECh films annealed at different temperatures for 45 min recorded at different rotation angles perpendicular to the light axis.

Figure S60. CPL spectra of DPCE-ECh films annealed at 70 °C for 45 min at different rotation angles.
perpendicular to the light axis (front side).

Figure S61. CPL spectra of DPCE-ECh films annealed at 70 °C with for 45 min at different rotation angles perpendicular to the light axis (back side).

Figure S62. CPL spectra of DPCE-ECh films annealed at 80 °C for 45 min at different rotation angles perpendicular to the light axis (front side).
Figure S63. CPL spectra of DPCE-ECh films annealed at 80 °C for 45 min at different rotation angles perpendicular to the light axis (back side).

Figure S64. CPL spectra of DPCE-ECh films annealed at 90 °C for 45 min at different rotation angles perpendicular to the light axis (front side).
Figure S65. CPL spectra of DPCE-ECh films annealed at 90 °C for 45 min at different rotation angles perpendicular to the light axis (back side).

Figure S66. CPL spectra of DPCE-ECh films annealed at 100 °C for 45 min at different rotation angles perpendicular to the light axis (front side).
Figure S67. CPL spectra of DPCE-ECh films annealed at 100 °C for 45 min at different rotation angle perpendicular to the light axis (back side).

Figure S68. CPL spectra of DPCE-ECh films annealed at 110 °C for 45 min at different rotation angles perpendicular to the light axis (front side).
Figure S69. CPL spectra of t DPCE-ECh films annealed at 110 °C for 45 min at different rotation angles perpendicular to the light axis (back side).

Figure S70. CPL spectra of DPCE-ECh films annealed at 120 °C for 45 min at different rotation angles perpendicular to the light axis (front side).
Figure S71. CPL spectra of DPCE-ECh films annealed at 120 °C for 45 min at different rotation angles perpendicular to the light axis (back side).

Figure S72. SEM textures of DPCE-ECh with layered and arched structures on the fracture plane.
8. References