Optimization of Oxygen Evolution Dynamics on RuO$_2$ via Controlling of Spontaneous Dissociation Equilibrium

Yu Sun,† Long Yuan,†§ Zhongyuan Liu,† Qiao Wang,† Keke Huang† and Shouhua Feng†,*

† State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012, P.R. China.

§ Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China.
Temperature dependent EIS at $E @j= 10 \text{ mA cm}^{-2}$

![Graph showing electrochemical impedance spectroscopy for RuO$_2$ under different temperature @j= 10 mA cm$^{-2}$.](image)

Figure S1 Electrochemical impedance spectroscopy for RuO$_2$ under different temperature @j= 10 mA cm$^{-2}$.

Temperature dependent Tafel slope

![Graph showing Tafel curve for RuO$_2$ under different temperature.](image)

Figure S2 Tafel curve for RuO$_2$ under different temperature.
The influence of ionic strength

Figure S3 The influence of ionic strength for OER performance. With adding supporting electrolyte, E_{O-O} (insert) and OER catalytic activity decreases rapidly.

pH dependent Tafel slope

Figure S4 Tafel curve for RuO$_2$ in different concentration KOH electrolyte.
Faraday efficiency

Figure S5 Faraday efficiency test using the RRDE method and the inset presents the test mechanism of the RRDE. $FE = \frac{|I_{\text{ORR}}|}{I_{\text{OER}} \cdot C_e}$. C_e: oxygen collection coefficient for RRDE (38.3%). (a) 0.1M KOH and 25°C; (b) 1M KOH and 50 °C.

REFERENCES

