SUPPORTING INFORMATION

Facile synthesis of diverse rotaxanes via successive supramolecular transformations

Yang Hu,^[a] Wei Wang^{*[a]}, Rui Yao,^[a] Xu-Qing Wang,^[a] Bin Sun,^[a] Yu-Xuan Wang,^[a] Li-Jun Chen,^[a] Ying Zhang,^[b] Xiao-Li Zhao,^[a] Lin Xu,^[a] Hong-Wei Tan,^[b] Yihua Yu,^[c] Xiaopeng Li^[d] and Hai-Bo Yang^{*[a]}

[a] Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.

E-mail: hbyang@chem.ecnu.edu.cn (H.-B. Yang); weiwang@stu.ecnu.edu.cn (W. Wang).

[b] College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.

[c] Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, P. R. China.

[d] Department of Chemistry, University of South Florida, East Fowler Ave, Florida 4202, USA.

Table of Contents:

1. General Information	S3
2. Synthesis of key [3]rotaxane precursor 1	S4
3. Syntheis of V-shaped organometallic [3]rotaxanes 2, 3, 5, and ligand-exchange reactions.	6 via S8
4. Synthesis of linear organic [3]rotaxane 4 via reductive elimination reactions	S19
5. References	S23

1. General Information.

All reagents were of analytical purity and used without further treatment. TLC analyses were performed on silica-gel plates, and flash chromatography was conducted using silica-gel column packages purchased from Qingdao Haiyang Chemical Co., Ltd. (China). The starting material **S1**,^[1] (Ph₃P)₂PtCl₂,^[2] and 1,4-dipropoxypillar[5]arene (DPP[5]A)^[3] were prepared according to the established methods.

¹H NMR and ³¹P NMR spectra were recorded on Bruker 400 MHz Spectrometer (¹H: 400 MHz; ³¹P: 161.9 MHz) at 298 K. 2-D NOESY spectrum was recorded on Bruker 500 MHz Spectrometer at 298 K. The ¹H and ¹³C NMR chemical shifts are reported relative to the residual solvent signals, and ³¹P NMR resonances are referenced to an internal standard sample of 85% H₃PO₄ (δ 0.0). Coupling constants (*J*) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, m = multiplet, br = broad. Mass spectra were recorded on a Waters LCT Premier XE spectrometer with acetonitrile or methanol as solvent. UV–vis spectra were recorded in a quartz cell (light path 10 mm) on a Cary 50Bio UV-Visible spectrophotometer. Synthesis of key [3]rotaxane precursor 1: A Schlenk flask was charged with 186 mg (0.45 mmol) of S1, DPPillar[5]arene (2.8 g, 2.72 mmol), and Pt(PPh₃)₂Cl₂ (179 mg, 0.23 mmol). The Schlenk flask was then evacuated via the reduced pressure and backfilled with N2. Next, 8.0 mL of the mixture solvent of dry CHCl₃ and *i*-Pr₂NH (v/v, 2:1) was added via syringe. The resultant solution was stirred for two hours under ice bath. Then CuI (44 mg, 50 mol %) was added to the mixture under N₂ atmosphere, and the mixture was allowed to stirring for 3 days at room temperature. The solvent was then removed by reduced pressure, and the compound was purified by column chromatography (eluent, petroleum ether/dichloromethane, v/v, 2:1 to 1:3): 611 mg (75% yield) of a slight yellow solid was afforded; Mp: 202 °C (dec.); ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (m, 12H), 7.39 (m, 18H), 7.02 (t, J = 8.4 Hz, 2H), 6.89 (s, 10H), 6.85 (s, 10H), 6.61 (d, J = 8.8 Hz, 4H), 6.38 (d, *J* = 8.4 Hz, 4H), 6.26 (d, *J* = 8.4 Hz, 4H), 3.97 (t, *J* = 8.4 Hz, 4H), 3.87 (s, 12H), 3.74 (s, 20H), 3.60-3.90 (m, 48H), 2.46 (m, 4H), 1.57-1.93 (m, 40H), 1.31 (m, 4H), 1.10 (t, J = 6.0 Hz),30H), 0.89 (t, J = 6.0 Hz, 30H), 0.56 (m, 4H), -0.36 (m, 4H), -0.72 (m, 4H), -1.68 (m, 4H), -2.32 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.2, 153.7, 149.6, 149.5, 137.4, 135.3, 131.6, 129.9, 128.2, 128.1, 127.6, 123.5, 114.2, 113.8, 112.7, 106.3, 73.7, 69.7, 69.4, 68.1, 56.0, 31.5, 31.2, 30.8, 30.2, 29.0, 28.4, 28.2, 27.0, 23.2, 23.1, 22.1, 10.7, 10.6; ³¹P NMR (CDCl₃, 161.9 Hz): δ 18.7 ppm $({}^{1}J_{P-Pt} = 2671 \text{ Hz}); \text{ MALDI-TOF-MS: } 3599.40 ([M+H]^+); \text{ Anal. Calcd. for } C_{218}H_{276}O_{28}P_2Pt: C,$ 72.70; H, 7.72; Found: C, 72.56; H, 7.68.

Figure S1: ¹H NMR spectrum (CDCl₃, 400 MHz, room temperature) of 1.

Figure S2: ¹³C NMR spectrum (CDCl₃, 100 MHz, room temperature) of **1**.

Figure S3: ³¹P NMR spectrum (CDCl₃, 161.9MHz, room temperature) of **1**.

Figure S4: 2-D NOESY spectrum (CDCl₃, 500 MHz, room temperature) of 1.

Figure S5: MALDI-TOF-MS spectrum of 1.

General procedure for the synthesis of V-shaped organometallic [3]rotaxanes 2, 3, 5, and 6 *via* ligand exchange reactions. Chelating diphosphine (2.0 eq.) was added to a solution of 1 (1.0 eq.) in dry CH_2Cl_2 . The mixture was then stirred at room temperature for 18 h. Solvent removal followed by purification *via* gradient column chromatography (silica gel, CH_2Cl_2/PE 1:1 to CH_2Cl_2) afforded the corresponding [3]rotaxanes.

For each rotaxane, the ligand used was listed as below:

cis-Bis(diphenylphosphino)ethylene (**DPPEE**), **2**; 1,3-Bis(diphenylphosphino)propane (**DPPP**), **3**; (2*S*,3*S*)-Bis(diphenylphosphino)butane (*S*, *S*-CHIRAPHOS), **5**; (2*R*,3*R*)-Bis(diphenylphosphino) -butane (*R*, *R*-CHIRAPHOS), **6**.

2: pale yellow solid, Yield: 95%, Mp: 128 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (m, 8H), 7.41–7.49 (m, 14H), 7.19 (d, J = 8.8 Hz, 4H), 7.02 (t, J = 8.4 Hz, 2H), 6.92 (s, 10H), 6.87 (s, 10H), 6.60–6.63 (m, 8H), 3.98 (t, J = 8.4 Hz, 4H), 3.88 (s, 12H), 3.75 (s, 20H), 3.61–3.92 (m, 52H), 2.41 (m, 4H), 1.65–1.94 (m, 36H), 1.31 (m, 4H), 1.11 (t, J = 6.0 Hz , 30H), 0.90 (t, J = 6.0 Hz , 30H), 0.67 (m, 4H), -0.18 (m, 4H), -0.85 (m, 4H), -1.48 (m, 4H), -2.29 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.7, 153.7, 149.7, 149.5, 137.4, 133.6, 133.5, 132.1, 131.1, 128.7, 128.5, 128.2, 128.1, 123.5, 114.3, 113.8, 113.2, 105.3, 73.6, 69.8, 69.4, 68.2, 56.0, 31.4, 31.3, 30.8, 30.4, 29.0, 28.6, 27.9, 27.0, 23.2, 23.1, 22.1, 10.7, 10.5; ³¹P NMR (CDCl₃, 161.9 Hz): δ 52.2 ppm (¹ $J_{P-Pt} = 2283$ Hz); MALDI-TOF-MS: 3471.47 ([M+H]⁺); Anal. Calcd. for C₂₀₈H₂₆₈O₂₈P₂Pt: C, 71.93; H, 7.78; Found: C, 71.85; H, 7.76.

3: white solid, Yield: 90%, Mp: 164 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.91 (m, 8H), 7.38 (m, 12H), 7.01 (t, *J* = 8.4 Hz, 2H), 6.91 (s, 10H), 6.85 (s, 10H), 6.79 (d, *J* = 8.8 Hz, 4H), 6.61 (d, *J* = 8.4 Hz, 4H), 6.48 (d, *J* = 8.4 Hz, 4H), 3.97 (t, *J* = 8.4 Hz, 4H), 3.87 (s, 12H), 3.74 (s, 20H),

3.61–3.90 (m, 52H), 2.49 (m, 8H), 2.13 (m, 2H), 1.62–1.92 (m, 36H), 1.32 (m, 4H), 1.11 (t, J = 6.0 Hz, 30H), 0.90 (t, J = 6.0 Hz, 30H), 0.60 (m, 4H), -0.30 (m, 4H), -0.76 (m, 4H), -1.62 (m, 4H), -2.34 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.5, 153.8, 149.7, 149.5, 137.4, 133.8, 132.3, 130.2, 128.2, 128.1, 128.2, 128.1, 119.7, 114.2, 113.8, 112.7, 105.3, 73.7, 69.7, 69.4, 68.2, 56.0, 31.4, 31.2, 30.8, 30.3, 30.1, 29.7, 29.0, 28.5, 28.1, 27.0, 23.2, 23.1, 22.0, 10.7, 10.5; ³¹P NMR (CDCl₃, 161.9 Hz): δ -5.5 ppm (¹*J*_{P-Pt} = 2202 Hz); MALDI-TOF-MS: 3487.40 ([M+H]⁺); Anal. Calcd. for C₂₀₉H₂₇₂O₂₈P₂Pt: C, 71.94; H, 7.86; Found: C, 71.59; H, 7.93.

5: white solid, Yield: 55%, Mp: 62 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.03–7.90 (m, 8H), 7.38 (m, 12H), 7.04-7.00 (m, 6H), 6.91 (s, 10H), 6.86 (s, 10H), 6.61 (d, *J* = 8.4 Hz, 4H), 6.55 (d, *J* = 8.4 Hz, 4H), 3.98 (t, *J* = 8.4 Hz, 4H), 3.88 (s, 12H), 3.75 (s, 20H), 3.63–3.91 (m, 52H), 2.54–2.42 (m, 6H), 1.61–1.94 (m, 36H), 1.33 (m, 4H), 1.11 (t, *J* = 6.0 Hz, 30H), 1.05 (m, 6H), 0.90 (t, *J* = 6.0 Hz, 30H), 0.62 (m, 4H), -0.27 (m, 4H), -0.77 (m, 4H), -1.57 (m, 4H), -2.30 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.4, 153.7, 149.7, 149.5, 137.4, 136.5, 133.8, 133.6, 133.3, 132.1, 131.2, 130.5, 128.7, 128.5, 128.4, 128.3, 128.20, 128.16, 128.1, 123.5, 119.9, 114.2, 113.8, 112.9, 105.3, 73.7, 69.8, 69.4, 68.2, 56.0, 31.4, 31.2, 30.8, 30.3, 29.7, 29.0, 28.5, 28.0, 27.0, 23.2, 23.1, 22.1, 15.4, 10.7, 10.5; ³¹P NMR (CDCl₃, 161.9 Hz): δ 44.7 ppm (¹*J*_{P-Pt} = 2234 Hz); MALDI-TOF-MS: 3504.0 ([M+H]⁺); Anal. Calcd. for C₂₁₀H₂₇₄O₂₈P₂Pt: C, 71.99; H, 7.88;; Found: C, 72.38; H, 7.95.

6: white solid, Yield: 65%, Mp: 62 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.03–7.90 (m, 8H), 7.38 (m, 12H), 7.04-7.00 (m, 6H), 6.91 (s, 10H), 6.86 (s, 10H), 6.61 (d, J = 8.4 Hz, 4H), 6.55 (d, J = 8.4 Hz, 4H), 3.98 (t, J = 8.4 Hz, 4H), 3.88 (s, 12H), 3.75 (s, 20H), 3.63–3.91 (m, 52H), 2.54–2.42 (m, 6H), 1.61–1.94 (m, 36H), 1.33 (m, 4H), 1.11 (t, J = 6.0 Hz , 30H), 1.05 (m, 6H), 0.90 (t, J = 6.0 Hz , 30H), 0.62 (m, 4H), -0.27 (m, 4H), -0.77 (m, 4H), -1.57 (m, 4H), -2.30 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.5, 153.8, 149.7, 149.5, 137.5, 136.5, 133.8, 133.6, 133.3, 132.1, 131.2, 130.5, 128.7, 128.5, 128.4, 128.33, 128.30, 128.2, 128.1, 123.4, 119.9, 114.2, 113.9, 113.0, 105.3, 73.7, 69.8, 69.4, 68.2, 56.0, 31.4, 31.2, 30.8, 30.3, 29.7, 29.0, 28.5, 28.0, 27.0, 23.2, 23.1, 22.1, 15.4, 10.7, 10.5; ³¹P NMR (CDCl₃, 161.9 Hz): δ 44.7 ppm (¹ J_{P-Pt} = 2234 Hz); MALDI-TOF-MS: 3504.7 ([M+H]⁺); Anal. Calcd. for C₂₁₀H₂₇₄O₂₈P₂Pt: C, 71.99; H, 7.88; Found: C, 72.00; H, 8.09.

Figure S6: ¹H NMR spectrum (CDCl₃, 400 MHz, room temperature) of **2**.

Figure S7: ¹³C NMR spectrum (CDCl₃, 100 MHz, room temperature) of **2**.

Figure S8: ³¹P NMR spectrum (CDCl₃, 161.9 MHz, room temperature) of 2.

Figure S9: MALDI-TOF-MS spectrum of 2.

Figure S10: ¹H NMR spectrum (CDCl₃, 400 MHz, room temperature) of 3.

Figure S11: ¹³C NMR spectrum (CDCl₃, 100 MHz, room temperature) of **3**.

Figure S12: ³¹P NMR spectrum (CDCl₃, 161.9 MHz, room temperature) of 3.

Figure S13: MALDI-TOF-MS spectrum of 3.

Figure S14: ¹H NMR spectrum (CDCl₃, 400 MHz, room temperature) of 5.

Figure S15: ¹³C NMR spectrum (CDCl₃, 100 MHz, room temperature) of 5.

Figure S16: ³¹P NMR spectrum (CDCl₃, 161.9 MHz, room temperature) of 5.

Figure S17: ESI-TOF-MS spectrum of 5.

Figure S18: ¹H NMR spectrum (CDCl₃, 400 MHz, room temperature) of 6.

Figure S19: ¹³C NMR spectrum (CDCl₃, 100 MHz, room temperature) of 6.

Figure S20: ³¹P NMR spectrum (CDCl₃, 161.9 MHz, room temperature) of 6.

Figure S21: ESI-TOF-MS spectrum of 6.

Figure S22. Partial ³¹P NMR spectra of ligand exchange-induced supramolecular transformation from linear [3]rotaxane 1 to V-shaped [3]rotaxane 2 (196 MHz, CD₂Cl₂, 298 K): (a) [3]rotaxane 1;
(b) titration with 0.33 equiv. of DPPEE; (c) 0.66 equiv.of DPPEE; (d) 1.00 equiv. of DPPEE.

Figure S23: UV-vis spectra of 1, 2 and 3 in CH_2Cl_2 (10⁻⁵ M⁻¹).

Figure S24: UV-vis spectra of 5 and 6 in CH_2Cl_2 (10⁻⁵ M⁻¹).

General Procedure for the Synthesis of 4: I_2 (4.0 eq.) was added to a solution of 2 or 3 (1.0 eq.) in dry CHCl₃. The mixture was then stirred at room temperature for 12 h until the full conversion of 2 or 3 according to the TLC analysis. Solvent removal followed by purification *via* gradient column chromatography (silica gel, CH₂Cl₂/PE 1:1 to CH₂Cl₂) afforded 4 as a pale yellow solid.

4, Yield: (from **2**, 64%); (from **3**, 59%), Mp: 66 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (d, J = 8.8 Hz, 4H), 7.02 (t, J = 8.4 Hz, 2H), 6.92 (s, 10H), 6.87 (s, 10H), 6.74 (d, J = 8.4 Hz, 4H), 6.62 (d, J = 8.4 Hz, 4H), 3.98 (t, J = 8.4 Hz, 4H), 3.88 (s, 12H), 3.75 (s, 20H), 3.63–3.92 (m, 52H), 2.19 (m, 4H), 1.65–1.93 (m, 36H), 1.38 (m, 4H), 1.17 (m, 4H), 1.11 (t, J = 6.0 Hz , 30H), 0.96 (t, J = 6.0 Hz , 30H), 0.79 (m, 4H), 0.05 (m, 4H), -0.97 (m, 4H), -1.21 (m, 4H), -2.15 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 160.6, 153.7, 149.6, 137.3, 133.5, 132.7, 130.2, 128.4, 128.2, 123.5, 114.5, 114.3, 113.8, 113.5, 105.2, 81.8, 73.5, 72.4, 70.0, 69.4, 68.5, 56.0, 31.3, 31.2, 30.7, 30.6, 29.7, 29.0, 28.8, 27.4, 26.8, 23.22, 23.17, 22.2, 10.6, 10.5; MALDI-TOF-MS: 2880.36 ([M+H]⁺).

Figure S25: ¹H NMR spectrum (CDCl₃, 400 MHz, room temperature) of 4.

Figure S26: ¹³C NMR spectrum (CDCl₃, 100 MHz, room temperature) of 4.

Figure S27: MALDI-TOF-MS spectrum of 4.

Figure S28: Geometrical structure of rotaxanes **1** - **6** optimized by PM6 semiempirical molecular orbital methods.

 Table S1: Lengths of rotaxanes 1 - 6 optimized by PM6 semiempirical molecular orbital methods.

Rotaxane	Lengths (nm)
1	4.983
2	4.117
3	3.865
4	3.984
5	3.984
6	4.628

References

1. W. Wang, B. Sun, X.-Q. Wang, Y.-Y. Ren, L.-J. Chen, J. Ma, Y. Zhang, X. Li, Y. Yu, H. Tan, H.-B. Yang, *Chem. Eur. J.* **2015**, *21*, 6286.

- 2. U. Nagel, Chem. Ber., 1982, 115, 1998.
- 3. T. Boinski, A. Szumna, Tetrahedron 2012, 68, 9419.