Supplementary Information

Flexible Electrochromic Energy-saving Windows with Fast Switching and Bistability Based on Transparent Solid-state Electrolyte

Jinming Zeng a,b, Zhijun Wan a, Mimi Zhu a, Lianghui Ai a, Ping Liu1a, Wenji Deng c

a State Key Laboratory of Luminescent Materials and Devices, Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China

b Engineering research center for hydrogen energy materials and devices, School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China

c Department of Applied Physics, South China University of Technology, Guangzhou 510640, China

1Corresponding author: Tel./fax: +86 20 87111686.
E-mail address: mcpliu@scut.edu.cn (P. Liu)
Table of contents

1. Optoelectrochemical properties of PTCDA, 4E-2B-COOCH₃, and transparent solid-state electrolyte ..3
2. AC impedance spectroscopy of the T-SE...3
3. Spectroelectrochemistry of ECD 3, and ECD 4 under bending state4
4. Chronoamperometry of ECD 3 and ECD 4 under bending state4
5. Proposed electrochromic mechanism of PTCDA ..5
6. Optoelectrochemical properties of compound films ...5
1. Optoelectrochemical properties of PTCDA, 4E-2B-COOCH₃, and transparent solid-state electrolyte

![Figure S1.](image)

Figure S1. a) UV-vis absorption spectra of PTCDA and 4E-2B-COOCH₃ films; b) transmittance spectra of solid-state electrolyte (insets were photos of solid-state electrolyte); cyclic voltammetry curves of c) PTCDA film and d) 4E-2B-COOCH₃ film.

2. AC impedance spectroscopy of the T-SE

![Figure S2.](image)

Figure S2. Nyquist impedance plots for Cu/T-SE/Cu at room temperature.
3. Spectroelectrochemistry of ECD 3, and ECD 4 under bending state

![Fig. S3](image_url) Spectroelectrochemistry of (a) ECD 3, and (b) ECD 4 under bending state.

4. Chronoamperometry of ECD 3 and ECD 4 under bending state

![Fig. S4](image_url) Chronoamperometry of (a) ECD 3 and (b) ECD 4 under bending state.
5. Proposed electrochromic mechanism of PTCDA

Scheme S1. The proposed electrochromic mechanism diagram of PTCDA.

6. Optoelectrochemical properties of compound films

<table>
<thead>
<tr>
<th>Film</th>
<th>λ_{edge} a) (nm)</th>
<th>E_g^opt b) (eV)</th>
<th>$E_{\text{ox onset}}$ (V)</th>
<th>$E_{\text{red onset}}$ (V)</th>
<th>E_{HOMO} c) (eV)</th>
<th>E_{LUMO} d) (eV)</th>
<th>E_{elec} e) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTCDA</td>
<td>596</td>
<td>2.08</td>
<td>+0.87</td>
<td>-0.54</td>
<td>-5.27</td>
<td>-3.94</td>
<td>1.41</td>
</tr>
<tr>
<td>4EDOT-2B-COOCH$_3$</td>
<td>601</td>
<td>2.06</td>
<td>+0.46</td>
<td>-0.78</td>
<td>-4.86</td>
<td>-3.62</td>
<td>1.24</td>
</tr>
</tbody>
</table>

a) band edge wavelength; b) $E_g^\text{opt} = 1240/\lambda_{\text{edge}}$; c) $E_{\text{HOMO}} = -e(E_{\text{ox onset}} + E_{\text{ref}})$; d) $E_{\text{LUMO}} = -e(E_{\text{red onset}} + E_{\text{ref}})$; e) $E_{\text{elec}} = E_{\text{LUMO}} - E_{\text{HOMO}}$