Electronic supplementary information

A General Synthesis of Unnatural α-Amino Acids by Iron-Catalyzed Olefin-Olefin Coupling via Generated Radicals

Vladimir A. Larionov,*ab Nadezhda V. Stoletova,a Vladislav I. Kovalev,c Alexander F. Smol’yakov,ad Tat’yana F. Savel’yeva,a and Victor I. Maleeva

aA. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russian Federation
bDepartment of Inorganic Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
cDmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation
dPlekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation

Corresponding Author E-mail: larionov@ineos.ac.ru

1. General remarks..S2
2. Instrumentation..S2
3. General procedure for the olefin-olefin coupling of a chiral Ni(II) complex of dehydroalanine Schiff base 2 ((S)-BPB-Ni-∆-Ala) with different olefins ...S2
4. General procedure for the decomposition of the Ni(II) complexes (S,S)-4a, (S,S)-4c and 4r leading to amino acids isolation ..S21
5. X-ray diffraction study of Ni(II) complexes 4a, 4c and 4n (Table S1)..S22
6. References ..S25
7. Copies of ¹H- and ¹³C-NMR spectra ..S26
1. General remarks
Whenever the use of dry solvents is mentioned below the reactions were conducted under an atmosphere of argon using Schlenk-line techniques in flame-dried glassware. The reported catalytic reactions were performed in Schlenk tubes (10 mL). All solvents were purchased from commercial suppliers. The Ni(II) complex 2 ((S)-BPB-Ni-∆-Ala) was synthesized according to a literature procedure.[1] Methyl methyl(vinyl)phosphinate 3r was synthesized according to a published procedures.[2,3] Purchased reagents from commercial suppliers were used without further purification. If not stated otherwise, flash column chromatography was performed with silica gel 60 M from Macherey-Nagel.

2. Instrumentation
Proton nuclear magnetic resonance (\textit{1H-NMR}) spectra and carbon nuclear magnetic resonance (\textit{13C-NMR}) spectra were recorded on a Bruker Avance III-400 NMR spectrometer (operating at 400/101 MHz respectively referring to \textit{1H/13C} nucleus). Chemical shifts are reported in ppm relative to the residual solvent peak (CDCl\textsubscript{3}: \(\delta = 7.26\) ppm for \textit{1H-NMR}, \(\delta = 77.2\) for \textit{13C-NMR}; D\textsubscript{2}O: \(\delta = 4.79\) ppm for \textit{1H-NMR}). NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant, integration, and nucleus. High-resolution mass spectra were recorded on an AB Sciex TripleTOF 5600+ instrument using ESI ionization method (DuoSpray source). Optical rotations were measured on Schmidt+Haensch Polartronic H532 polarimeter in a 10-cm cell. X-ray diffraction data were collected on a Bruker APEX-II CCD diffractometer [\(\lambda (\text{MoK}\alpha) = 0.71073\) Å, \(\omega\)-scans, \(2\theta < 58^\circ\)].

3. General procedure for the olefin-olefin coupling of a chiral Ni(II) complex of dehydroalanine Schiff base 2 ((S)-BPB-Ni-∆-Ala) with different olefins
A Schlenk tube (10 mL) was charged with a chiral Ni(II) complex 2 (51.0 mg, 0.1 mmol, 1.0 equiv.), catalyst Fe(acac)\textsubscript{3} (10.5 mg, 0.03 mmol), and vacuumed and purged with argon (3 times). Then, to a mixture were added 1,2-dichloroethane (0.75 mL), proton source (2.7 mmol, 27.0 equiv., in case of EtOH (0.16 mL)), olefin (0.5 mmol, 5 equiv.) and phenylsilane (0.06 mL, 0.15 mmol, 1.5 equiv.), and the mixture stirred at room temperature under argon atmosphere for 16 h. Full conversion for each reaction confirmed by TLC analysis. Then the solvent was evaporated and the residue was purified by preparative TLC or column flash chromatography on SiO\textsubscript{2} to afford the desired product.

Ni(II) complex (S,S)-4a
Starting from a chiral Ni(II) complex 2 and 1-methyl-1-cyclohexene 3a with applying the general procedure, the desired product (S,S)-4a was isolated as a red powder (54.8 mg, yield 90%, \(dr > 20:1\)). Eluent: CHCl\textsubscript{3}/acetone (5:1).
1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.08$ (d, $J = 7.3$ Hz, 2H), 7.97 (d, $J = 8.5$ Hz, 1H), 7.53–7.40 (m, 3H), 7.33 (t, $J = 7.6$ Hz, 2H), 7.28 (d, $J = 6.9$ Hz, 1H), 7.17 (t, $J = 7.4$ Hz, 1H), 7.14–7.06 (m, 1H), 6.93 (d, $J = 7.2$ Hz, 1H), 6.67–6.55 (m, 2H), 4.42 (d, $J = 12.6$ Hz, 1H), 3.89 (dd, $J = 11.1$, 3.7 Hz, 1H), 3.84–3.70 (m, 1H), 3.57–3.43 (m, 3H), 3.05–2.93 (m, 1H), 2.84–2.71 (m, 1H), 2.60–2.47 (m, 1H), 2.29–2.17 (m, 1H), 2.13–2.04 (m, 1H), 1.53 (dd, $J = 13.8$, 3.7 Hz, 1H), 1.37–1.17 (m, 8H), 1.05–0.94 (m, 1H), 0.87–0.74 (m, 1H), 0.67 (s, 3H) ppm.

13C-NMR (101 MHz, CDCl$_3$): $\delta =$ 180.4, 180.1, 168.7, 142.0, 133.5, 133.3, 133.1, 131.9, 131.6, 131.3, 129.8, 129.1, 129.0, 128.9, 127.9, 127.8, 126.9, 123.9, 120.9, 70.3, 68.3, 63.0, 57.2, 49.0, 38.2, 37.5, 33.0, 30.8, 26.0, 25.1, 24.1, 21.8, 21.7 ppm.

HRMS (ESI, m/z) calcd. for C$_{35}$H$_{40}$N$_3$NiO$_3$ $[\text{M}+\text{H}]^+$: 608.2418, found: 608.2441.

The structure of (S,S)-4a was determined by single crystal X-ray analysis (see Scheme 2 in main text and Part 5 in the SI).

Diastereoselective ratio (dr value) was determined according to the 1H NMR peak areas of Ha in (S,S)-4a and (S,R)-4a from the isolated mixture of products (partial 1H NMR of the diastereoisomers is shown below), $dr > 20:1$ for (S,S)-4a/(S,R)-4a.
Ni(II) complex (S,S)-4b

Starting from a chiral Ni(II) complex 2 and methylenecyclobutane 3b with applying the general procedure, the desired product (S,S)-4b was isolated as a red powder (40.0 mg, yield 69%, dr 16:1). Eluent: CHCl₃/acetone (5:1).

¹H-NMR (400 MHz, CDCl₃): δ = 8.09–7.99 (m, 3H), 7.54–7.41 (m, 3H), 7.34 (t, J = 7.6 Hz, 2H), 7.30–7.27 (m, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.16–7.09 (m, 1H), 6.93 (d, J = 7.3 Hz, 1H), 6.69–6.60 (m, 2H), 4.44 (d, J = 12.7 Hz, 1H), 3.92–3.73 (m, 2H), 3.57 (d, J = 12.7 Hz, 1H), 3.55–3.44 (m, 2H), 3.06 (dd, J = 13.2, 11.3 Hz, 1H), 2.88–2.76 (m, 1H), 2.64–2.50 (m, 1H), 2.31–2.20 (m, 1H), 2.13–2.03 (m, 1H), 1.89–1.79 (m, 2H), 1.79–1.68 (m, 2H), 1.66–1.54 (m, 3H), 0.78 (s, 3H) ppm.

¹³C-NMR (101 MHz, CDCl₃): δ = 180.3, 179.0, 169.0, 142.0, 133.4, 133.3, 133.1, 131.9, 131.6, 129.7, 128.9, 128.88, 128.84, 127.7, 127.6, 126.6, 123.9, 120.8, 70.3, 68.2, 63.0, 57.1, 50.2, 37.4, 35.1, 33.7, 30.8, 24.2, 24.1, 15.6 ppm.

HRMS (ESI, m/z) calcd. for C₃₃H₃₆N₃NiO₃⁺ [M+H]⁺: 580.2105, found: 580.2110.

Diastereoselective ratio (dr value) was determined according to the ¹H NMR peak areas of Me group in (S,S)-4b and (S,R)-4b from the isolated mixture of products (partial ¹H NMR of the diastereoisomers is shown below), dr 16:1 for (S,S)-4b/(S,R)-4b.
Ni(II) complex (S,S)-4c

Starting from a chiral Ni(II) complex 2 and α-methyl styrene 3c with applying the general procedure, the desired product (S,S)-4c was isolated as a red powder (58.0 mg, yield 92%, \(dr > 20:1\)). Eluent: CHCl₃/acetone (5:1).

\(^1\)H-NMR (400 MHz, CDCl₃): \(\delta = 8.05 (d, \ J = 7.4 \ Hz, 2H), \ 8.01 (d, \ J = 8.6 \ Hz, 1H), \ 7.56–7.43 \ (m, 3H), \ 7.32 \ (t, \ J = 7.5 \ Hz, 2H), \ 7.24–7.14 \ (m, 4H), \ 7.14–7.05 \ (m, 4H), \ 6.89 \ (d, \ J = 7.4 \ Hz, 1H), \ 6.65–6.58 \ (m, 1H), \ 6.56 \ (d, \ J = 7.9 \ Hz, 1H), \ 4.40 \ (d, \ J = 12.6 \ Hz, 1H), \ 3.89–3.74 \ (m, 2H), \ 3.58–3.43 \ (m, 3H), \ 3.38–3.27 \ (m, 1H), \ 2.82–2.72 \ (m, 1H), \ 2.64–2.48 \ (m, 1H), \ 2.33–2.23 \ (m, 1H), \ 2.12–2.03 \ (m, 1H), \ 1.93 \ (dd, \ J = 13.8, 4.0 \ Hz, 1H), \ 1.26 \ (s, 3H), \ 1.12 \ (s, 3H) \ ppm.

\(^{13}\)C-NMR (101 MHz, CDCl₃): \(\delta = 180.3, \ 178.9, \ 169.0, \ 148.4, \ 142.1, \ 133.4, \ 133.3, \ 133.1, \ 132.0, \ 131.6, \ 129.8, \ 129.1, \ 128.9, \ 128.87, \ 128.0, \ 127.9, \ 127.6, \ 126.7, \ 125.7, \ 125.3, \ 123.8, \ 120.8, \ 70.2, \ 68.7, \ 63.0, \ 57.2, \ 51.6, \ 37.2 \ 30.8, \ 27.6, \ 24.2 \ ppm.

HRMS (ESI, \(m/z\)) calcd. for C₃₇H₃₈N₃NiO₃\(^{+}\) [M+H]\(^{+}\): 630.2261, found: 630.2285.

The structure of (S,S)-4c was determined by single crystal X-ray analysis (see Scheme 2 in main text and Part 5 in the SI).

Diastereoselective ratio (\(dr\) value) was determined according to the \(^1\)H NMR peak areas of Me group in (S,S)-4c and (S,R)-4c from the isolated mixture of products (partial \(^1\)H NMR of the diastereoisomers is shown below), \(dr > 20:1\) for (S,S)-4c/(S,R)-4c.
Ni(II) complex (S,S)-4d

Starting from a chiral Ni(II) complex 2 and cyclopentene 3d with applying the general procedure, the desired product (S,S)-4d was isolated as a red powder (43.5 mg, yield 75%, dr 6:1). Eluent: CHCl$_3$/acetone (5:1).

1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.14$–7.99 (m, 3H), 7.53–7.41 (m, 3H), 7.34 (t, $J = 7.6$ Hz, 2H), 7.30–7.26 (m, 1H), 7.18 (t, $J = 7.5$ Hz, 1H), 7.15–7.08 (m, 1H), 6.92 (d, $J = 7.3$ Hz, 1H), 6.68–6.57 (m, 2H), 4.46 (d, $J = 12.6$ Hz, 1H), 3.87 (dd, $J = 10.2$, 3.5 Hz, 1H), 3.71–3.60 (m, 1H), 3.58–3.42 (m, 3H), 2.81–2.66 (m, 1H), 2.56–2.44 (m, 2H), 2.26–2.18 (m, 1H), 2.11–2.01 (m, 1H), 1.96–1.85 (m, 1H), 1.57–1.27 (m, 7H), 1.07–0.94 (m, 1H), 0.20–0.06 (m, 1H) ppm.

13C-NMR (101 MHz, CDCl$_3$): $\delta = 180.4$, 179.4, 169.8, 142.1, 133.7, 133.3, 133.1, 132.0, 131.6, 129.7, 129.1, 128.9, 128.88, 128.86, 127.8, 127.6, 126.6, 123.8, 120.7, 70.2, 70.1, 63.0, 57.2, 42.9, 36.0, 33.7, 31.2, 30.7, 25.0, 24.8, 24.0 ppm.

HRMS (ESI, m/z) calcd. for C$_{33}$H$_{36}$N$_3$NiO$_3$+ [M+H]$^+$: 580.2105, found: 580.2118.

Diastereoselective ratio (dr value) was determined according to the 1H NMR peak areas of Ha in (S,S)-4d and (S,R)-4d from the isolated mixture of products (partial 1H NMR of the diastereoisomers is shown below), dr 6:1 for (S,S)-4d/(S,R)-4d.
Ni(II) complex (S,S)-4e

Starting from a chiral Ni(II) complex 2 and 1,1-diphenylethylene 3e with applying the general procedure, the desired product (S,S)-4e was isolated as a red powder (20.8 mg, yield 30%, dr 3.4:1). Eluent: CHCl₃/acetone (7:1).

¹H-NMR (400 MHz, CDCl₃): δ = 8.07–8.03 (m, 3H), 7.53–7.47 (m, 1H), 7.47–7.40 (m, 1H), 7.38–7.29 (m, 4H), 7.25–7.16 (m, 6H), 7.15–7.09 (m, 2H), 7.08–6.99 (m, 3H), 6.89 (d, J = 7.4 Hz, 1H), 6.81–6.75 (m, 1H), 6.67–6.61 (m, 1H), 6.56–6.49 (m, 1H), 4.41 (d, J = 12.6 Hz, 1H), 4.06–3.84 (m, 2H), 3.73–3.64 (m, 1H), 3.60–3.47 (m, 3H), 2.90–2.81 (m, 1H), 2.62–2.55 (m, 1H), 2.51 (dd, J = 13.6, 4.8 Hz, 1H), 2.37–2.26 (m, 1H), 2.13–2.05 (m, 1H), 1.57 (s, 3H) ppm.

¹³C-NMR (101 MHz, CDCl₃): δ = 180.4, 178.3, 169.2, 149.9, 146.9, 142.1, 133.3, 133.2, 132.1, 131.7, 131.6, 129.8, 129.1, 129.0, 128.92, 128.90, 128.0, 127.9, 127.6, 127.0, 126.7, 125.9, 125.7, 125.3, 123.8, 120.8, 120.1, 70.3, 68.6, 63.0, 57.2, 48.8, 45.2, 30.9, 27.0, 24.3 ppm.

Diastereoselective ratio (dr value) was determined according to the ¹H NMR peak areas of Hₐ in (S,S)-4e and (S,R)-4e from the isolated mixture of products (partial ¹H NMR of the diastereoisomers is shown below), dr 3.4:1 for (S,S)-4e/(S,R)-4e.
Ni(II) complex \((S,S)-4f\)

Starting from a chiral Ni(II) complex 2 and methyl methacrylate 3f with applying the general procedure, the desired product \((S,S)-4f\) was isolated as a red powder (54.5 mg, yield 89%, \(dr >20:1\)). Eluent: CHCl₃/acetone (5:1).

\(^1\)H-NMR (400 MHz, CDCl₃): \(\delta = 8.11–7.99\) (m, 3H), 7.58–7.42 (m, 3H), 7.41–7.31 (m, 2H), 7.31–7.27 (m, 1H), 7.22–7.09 (m, 2H), 6.97 (d, \(J = 7.3\) Hz, 1H), 6.71–6.60 (m, 2H), 4.41 (d, \(J = 12.6\) Hz, 1H), 3.94–3.85 (m, 2H), 3.58 (s, 3H), 3.55–3.43 (m, 3H), 2.86–2.74 (m, 1H), 2.61–2.47 (m, 1H), 2.36–2.23 (m, 1H), 2.14–2.03 (m, 1H), 1.88–1.65 (m, 1H), 1.41 (dd, \(J = 13.4, 4.1\) Hz, 1H), 1.08 (s, 3H), 0.75 (s, 3H) ppm.

\(^{13}\)C-NMR (101 MHz, CDCl₃): \(\delta = 180.4, 178.4, 176.6, 169.7, 142.2, 133.4, 133.3, 133.1, 132.1, 131.6, 129.9, 129.0, 128.9, 128.8, 127.7, 127.6, 126.5, 123.9, 120.8, 70.4, 67.8, 63.0, 57.4, 51.7, 45.4, 40.5, 30.9, 23.8, 21.6\) ppm.

HRMS (ESI, \(m/z\)) calcd. for C\(_{33}\)H\(_{36}\)N\(_3\)NiO\(_5\)\(^{+}\): 612.2003, found: 612.2028.

Diastereoselective ratio (\(dr\) value) was determined according to the \(^1\)H NMR peak areas of H\(^a\) in \((S,S)-4f\) and \((S,R)-4f\) from the isolated mixture of products (partial \(^1\)H NMR of the diastereoisomers is shown below), \(dr >20:1\) for \((S,S)-4f/(S,R)-4f\).
Ni(II) complex (S,S)-4g

Starting from a chiral Ni(II) complex 2 and butyl methacrylate 3g with applying the general procedure, the desired product (S,S)-4g was isolated as a red powder (55.6 mg, yield 85%, dr 12:1). Eluent: CHCl₃/acetone (5:1).

¹H-NMR (400 MHz, CDCl₃): δ = 8.11–8.02 (m, 3H), 7.56–7.43 (m, 3H), 7.34 (t, J = 7.5 Hz, 2H), 7.31–7.27 (m, 1H), 7.24–7.08 (m, 2H), 7.02–6.93 (m, 1H), 6.70–6.60 (m, 2H), 4.42 (d, J = 12.6 Hz, 1H), 4.12–4.00 (m, 1H), 3.99–3.83 (m, 3H), 3.66–3.56 (m, 1H), 3.56–3.38 (m, 3H), 2.87–2.72 (m, 1H), 2.65–2.46 (m, 1H), 2.33–2.21 (m, 1H), 2.16–2.03 (m, 1H), 1.64–1.52 (m, 2H), 1.47–1.30 (m, 3H), 1.05 (s, 3H), 0.90 (t, J = 7.3 Hz, 3H), 0.72 (s, 3H) ppm.

¹³C-NMR (101 MHz, CDCl₃): δ = 180.5, 178.4, 176.2, 169.6, 142.2, 133.5, 133.4, 133.1, 132.1, 131.6, 129.8, 129.0, 128.9, 128.8, 127.7, 127.6, 126.5, 123.9, 120.7, 70.4, 67.7, 64.4, 63.0, 57.5, 45.5, 40.6, 30.9, 30.6, 29.4, 24.0, 21.6, 19.2, 13.8 ppm.

HRMS (ESI, m/z) calcd. for C₉₆H₄₂N₃NiO₅⁺ [M+H]⁺: 654.2472, found: 654.2460.

Diastereoselective ratio (dr value) was determined according to the ¹H NMR peak areas of Hα in (S,S)-4g and (S,R)-4g from the isolated mixture of products (partial ¹H NMR of the diastereoisomers is shown below), dr 12:1 for (S,S)-4g/(S,R)-4g.
Ni(II) complex (S,S)-4h

Starting from a chiral Ni(II) complex 2 and 1-nitrocyclohex-1-ene 3h with applying the general procedure, the desired product (S,S)-4h was isolated as a red powder (26.9 mg, yield 42%, \(dr \geq 20:1\)).

Eluent: CHCl₃/acetone (5:1).

\(^1\)H-NMR (400 MHz, CDCl₃): \(\delta = 8.09\) (d, \(J = 7.8\) Hz, 2H), 8.04 (d, \(J = 8.7\) Hz, 1H), 7.58–7.46 (m, 3H), 7.38–7.28 (m, 3H), 7.22–7.10 (m, 2H), 7.01 (d, \(J = 7.5\) Hz, 1H), 6.65 (t, \(J = 7.6\) Hz, 1H), 6.61–6.52 (m, 1H), 4.40 (d, \(J = 12.6\) Hz, 1H), 4.03–3.89 (m, 2H), 3.76–3.58 (m, 2H), 3.56–3.46 (m, 2H), 2.83–2.72 (m, 1H), 2.63–2.49 (m, 1H), 2.36–2.24 (m, 2H), 2.16–1.97 (m, 3H), 1.87–1.71 (m, 2H), 1.55–1.43 (m, 1H), 1.40–1.17 (m, 4H), 0.26–0.04 (m, 1H) ppm.

\(^{13}\)C-NMR (101 MHz, CDCl₃): \(\delta = 180.6, 177.6, 170.3, 142.5, 133.6, 133.4, 133.2, 132.4, 131.6, 130.1, 129.3, 129.1, 128.9, 127.8, 127.7, 126.4, 123.9, 120.8, 89.6, 70.5, 65.8, 63.2, 57.7, 40.0, 37.5, 30.8, 30.3, 24.3, 24.0, 22.5, 21.1\) ppm.

HRMS (ESI, \(m/z\)) calcd. for C₃₄H₃₇N₄NiO₅\([M+H]^+\): 639.2112, found: 639.2122.

Diastereoselective ratio (\(dr\) value) was determined according to the \(^1\)H NMR peak areas of H\(^a\) in (S,S)-4h and (S,R)-4h from the isolated mixture of products (partial \(^1\)H NMR of the diastereoisomers is shown below), \(dr \geq 20:1\) for (S,S)-4h/(S,R)-4h.
Ni(II) complexes 4i

Starting from a chiral Ni(II) complex 2 and styrene 3i with applying the general procedure, the mixture of diastereomers (S,S,S)-4i and (S,S,R)-4i were isolated in a ratio of \(dr\) 1:1 as a red powders (combined yield of both diastereomers 45.0 mg, 73%). Diastereoselective ratio (\(dr\) value) was determined according to chemical yields of the isolated diastereomers. Yield of the first eluting diastereomer was 22.6 mg and yield of the second eluting was 22.4 mg. Preparative TLC, eluent: CHCl\(_3\)/acetone (10:1).

1\(^{st}\) diastereomer

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.11–8.02\) (m, 3H), 7.59–7.49 (m, 3H), 7.35 (t, \(J = 7.5\) Hz, 3H), 7.31–7.27 (m, 2H), 7.19 (t, \(J = 7.3\) Hz, 2H), 7.16–7.08 (m, 3H), 7.02–6.96 (m, 1H), 6.71–6.63 (m, 2H), 4.45 (d, \(J = 12.6\) Hz, 1H), 4.01 (dd, \(J = 11.6, 3.2\) Hz, 1H), 3.63–3.41 (m, 4H), 3.16–3.04 (m, 1H), 2.81 (t, \(J = 11.5\) Hz, 1H), 2.68–2.57 (m, 1H), 2.52–2.38 (m, 1H), 2.15–2.01 (m, 2H), 1.78–1.67 (m, 1H), 0.59 (d, \(J = 6.6\) Hz, 3H) ppm.

\(^{13}\)C-NMR (101 MHz, CDCl\(_3\)): \(\delta = 180.5, 179.0, 169.9, 147.3, 142.2, 133.6, 133.3, 133.1, 132.1, 131.6, 129.9, 129.1, 129.0, 128.9, 128.6, 127.8, 127.6, 126.6, 126.5, 126.2, 123.9, 120.8, 70.2, 68.7, 63.1, 57.3, 45.3, 35.1, 30.7, 24.1, 19.2 ppm.

HRMS (ESI, \(m/z\)) calcd. for C\(_{36}\)H\(_{36}\)N\(_3\)NiO\(_3\)^+ [M+H]^+: 616.2105, found: 616.2120.

2\(^{nd}\) diastereomer

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.12–7.99\) (m, 3H), 7.38–7.28 (m, 4H), 7.19–7.07 (m, 3H), 7.03–6.98 (m, 3H), 6.95 (d, \(J = 7.3\) Hz, 1H), 6.86–6.75 (m, 3H), 6.60 (t, \(J = 7.6\) Hz, 1H), 6.45 (d, \(J = 8.1\) Hz, 1H), 4.43 (d, \(J = 12.6\) Hz, 1H), 3.79–3.67 (m, 1H), 3.65–3.43 (m, 4H), 3.13–3.00 (m, 1H), 2.95–2.84 (m, 1H), 2.82–2.71 (m, 1H), 2.62–2.48 (m, 1H), 2.32–2.18 (m, 1H), 2.12–2.02 (m, 1H), 1.93–1.82 (m, 1H), 1.22 (d, \(J = 6.9\) Hz, 3H) ppm.

\(^{13}\)C-NMR (101 MHz, CDCl\(_3\)): \(\delta = 180.3, 178.7, 169.7, 144.7, 142.0, 133.3, 133.2, 133.0, 131.9, 131.6, 129.7, 128.9, 128.8, 128.2, 127.3, 127.2, 126.9, 126.7, 125.7, 123.7, 120.7, 70.3, 68.7, 63.1, 57.2, 45.4, 35.5, 30.7, 24.1, 23.3 ppm.

HRMS (ESI, \(m/z\)) calcd. for C\(_{36}\)H\(_{36}\)N\(_3\)NiO\(_3\)^+ [M+H]^+: 616.2105, found: 616.2118.

Ni(II) complex 4j

Starting from a chiral Ni(II) complex 2 and ortho-isopropoxystyrene 3j with applying the general procedure, the mixture of diastereomers (S,S,S)-4j and (S,S,R)-4j were isolated in a ratio of \(dr\) 5.5:1 as a red powders (combined yield of both diastereomers 58.0 mg, 86%). Eluent: CHCl\(_3\)/acetone (5:1).
major diastereomer

1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.14–8.02$ (m, 3H), 7.46–7.29 (m, 5H), 7.23–7.08 (m, 4H), 7.06–6.95 (m, 2H), 6.72 (d, $J = 8.2$ Hz, 1H), 6.64 (t, $J = 7.4$ Hz, 1H), 6.59–6.53 (m, 1H), 6.51–6.43 (m, 1H), 4.52–4.39 (m, 2H), 3.91–3.80 (m, 1H), 3.76–3.62 (m, 1H), 3.59–3.44 (m, 3H), 3.42–3.32 (m, 1H), 2.82–2.65 (m, 2H), 2.58–2.48 (m, 1H), 2.42–2.30 (m, 1H), 2.28–2.19 (m, 1H), 2.12–2.02 (m, 1H), 1.26 (dd, $J = 11.3$, 6.0 Hz, 6H), 1.12 (d, $J = 5.7$ Hz, 3H) ppm.

13C-NMR (101 MHz, CDCl$_3$): $\delta = 210.9$, 180.3, 178.7, 169.7, 142.5, 142.0, 133.3, 133.1, 133.0, 132.0, 131.5, 131.3, 129.7, 128.9, 128.85, 128.8, 128.4, 127.2, 126.8, 125.9, 123.8, 120.7, 70.3, 68.4, 63.1, 60.9, 57.2, 44.0, 40.1, 38.1, 30.7, 29.3, 24.2 ppm.

HRMS (ESI, m/z) calcd. for C$_{39}$H$_{42}$N$_3$NiO$_4^+$ [M+H]$^+$: 674.2523, found: 674.2547.

Diastereoselective ratio (dr value) was determined according to the 1H NMR peak areas of Me group in (S,S,S)-4j and (S,S,R)-4j from the isolated mixture of products (partial 1H NMR of the diastereoisomers is shown below), dr 5.5:1 for (S,S,S)-4j/(S,S,R)-4j.

Ni(II) complexes 4k

Starting from a chiral Ni(II) complex 2 and 3-phenylprop-2-en-1-ol 3k with applying the general procedure, the mixture of diastereomers (S,S,S)-4k and (S,S,R)-4k were isolated in a ratio of dr 2:1 as a
red powders (combined yield of both diastereomers 58.8 mg, 91%). Diastereoselective ratio (dr value) was determined according to chemical yields of the isolated diastereomers. Yield of the first eluting diastereomer was 19.6 mg and yield of the second eluting was 39.2 mg. Eluent: CHCl₃/acetone (5:1 to 3:1).

1st diastereomer (major)

¹H-NMR (400 MHz, CDCl₃): δ = 8.14–7.99 (m, 3H), 7.65–7.49 (m, 3H), 7.40–7.32 (m, 3H), 7.32–7.27 (m, 2H), 7.24–7.16 (m, 2H), 7.16–7.08 (m, 3H), 7.00–6.93 (m, 1H), 6.72–6.60 (m, 2H), 4.40 (d, J = 12.5 Hz, 1H), 4.18–4.10 (m, 1H), 3.55 (d, J = 12.5 Hz, 1H), 3.51–3.39 (m, 3H), 3.28–3.14 (m, 2H), 3.09–2.99 (m, 1H), 2.74 (t, J = 12.5 Hz, 1H), 2.63–2.56 (m, 1H), 2.50–2.38 (m, 1H), 2.12–2.00 (m, 2H), 1.92–1.81 (m, 1H), 1.20–1.12 (m, 2H) ppm.

¹³C-NMR (101 MHz, CDCl₃): δ = 180.4, 179.4, 170.1, 145.6, 142.2, 133.6, 133.3, 133.2, 132.2, 131.6, 130.0, 129.2, 129.0, 128.9, 128.7, 127.7, 127.6, 127.2, 126.5, 126.4, 123.9, 120.9, 70.2, 68.6, 63.2, 60.7, 57.3, 43.9, 38.0, 37.2, 30.6, 24.1 ppm.

HRMS (ESI, m/z) calcd. for C₃₇H₃₈N₃NiO₄⁺ [M+H]⁺: 646.2210, found: 646.2228.

2nd diastereomer (minor)

¹H-NMR (400 MHz, CDCl₃): δ = 8.05 (d, J = 7.1 Hz, 2H), 8.00 (d, J = 8.6 Hz, 1H), 7.37–7.27 (m, 4H), 7.18–7.06 (m, 3H), 7.04–6.97 (m, 3H), 6.92 (d, J = 7.1 Hz, 1H), 6.82 (d, J = 6.4 Hz, 1H), 6.79–6.71 (m, 2H), 6.65–6.57 (m, 1H), 6.43 (d, J = 8.1 Hz, 1H), 4.41 (d, J = 12.6 Hz, 1H), 3.82–3.69 (m, 1H), 3.60–3.42 (m, 6H), 3.11–2.97 (m, 2H), 2.81–2.72 (m, 1H), 2.61–2.48 (m, 1H), 2.32–2.20 (m, 1H), 2.13–2.02 (m, 1H), 1.94–1.68 (m, 4H) ppm.

¹³C-NMR (101 MHz, CDCl₃): δ = 180.3, 178.7, 169.7, 142.5, 142.0, 133.3, 133.1, 132.9, 132.0, 131.6, 129.7, 128.9, 128.87, 128.8, 128.77, 128.4, 127.2, 126.9, 125.9, 123.8, 120.7, 70.3, 63.1, 60.9, 57.2, 53.8, 44.0, 40.1, 38.1, 30.7, 24.2 ppm.

HRMS (ESI, m/z) calcd. for C₃₇H₃₈N₃NiO₄⁺ [M+H]⁺: 646.2210, found: 646.2221.

Ni(II) complexes 4l

Starting from a chiral Ni(II) complex 2 and indene 3l with applying the general procedure, the mixture of diastereomers (S,S,S)-4l and (S,S,R)-4l were isolated in a ratio of dr 2:5:1 as a red powders (combined yield of both diastereomers 54.8 mg, 87%). Diastereoselective ratio (dr value) was determined according to chemical yields of the isolated diastereomers. Yield of the first eluting diastereomer was 39.1 mg and yield of the second eluting was 15.7 mg. Preparative TLC, eluent: ethyl acetate.
1st diastereomer (major)

1H-NMR (400 MHz, CDCl$_3$): δ = 8.15–8.00 (m, 3H), 7.59–7.46 (m, 2H), 7.44–7.29 (m, 4H), 7.24–7.08 (m, 6H), 6.85 (d, J = 7.4 Hz, 1H), 6.70–6.53 (m, 2H), 4.48 (d, J = 12.7 Hz, 1H), 4.01–3.90 (m, 1H), 3.89–3.74 (m, 1H), 3.64–3.40 (m, 4H), 3.13 (t, J = 12.1 Hz, 1H), 2.84–2.47 (m, 4H), 2.37–2.24 (m, 1H), 2.14–1.92 (m, 2H), 1.65–1.48 (m, 1H), 0.47 (td, J = 15.7, 7.8 Hz, 1H) ppm.

13C-NMR (101 MHz, CDCl$_3$): δ = 180.4, 179.0, 169.9, 146.2, 142.1, 133.5, 133.3, 133.1, 132.1, 131.6, 129.8, 129.1, 129.0, 128.9, 127.7, 127.6, 126.6, 126.5, 126.3, 124.6, 123.9, 123.1, 120.8, 70.2, 69.4, 63.0, 57.3, 42.5, 41.0, 31.1, 30.8, 30.7, 24.2 ppm.

HRMS (ESI, m/z) calcd. for C$_{37}$H$_{36}$N$_3$NiO$_3$ [M+H]$^+$: 628.2105, found: 628.2117.

2nd diastereomer (minor)

1H-NMR (400 MHz, CDCl$_3$): δ = 8.51 (d, J = 8.6 Hz, 1H), 8.19 (d, J = 7.1 Hz, 2H), 7.59–7.48 (m, 5H), 7.42 (t, J = 7.4 Hz, 1H), 7.39–7.30 (m, 2H), 7.21–7.13 (m, 5H), 6.92 (d, J = 7.5 Hz, 1H), 6.73–6.69 (m, 1H), 4.49 (d, J = 13.1 Hz, 1H), 4.40–4.30 (m, 1H), 3.95 (dd, J = 11.7, 3.4 Hz, 1H), 3.72 (dd, J = 9.1, 3.6 Hz, 1H), 3.48 (d, J = 13.1 Hz, 1H), 3.43–3.34 (m, 1H), 2.90 (t, J = 12.5 Hz, 1H), 2.84–2.74 (m, 2H), 2.70–2.61 (m, 1H), 2.59–2.48 (m, 2H), 2.32–2.22 (m, 1H), 2.01–1.87 (m, 2H), 1.48 (dd, J = 17.2, 8.0 Hz, 1H), 0.47–0.34 (m, 1H) ppm.

13C-NMR (101 MHz, CDCl$_3$): δ = 181.9, 180.4, 170.6, 146.3, 143.8, 142.8, 134.0, 133.8, 133.7, 132.5, 131.6, 131.4, 129.7, 129.2, 128.9, 128.8, 128.1, 127.4, 126.5, 126.1, 125.9, 124.5, 123.7, 123.3, 120.8, 69.4, 68.9, 61.1, 59.0, 41.4, 40.8, 31.2, 30.4, 30.3, 23.2 ppm.

HRMS (ESI, m/z) calcd. for C$_{37}$H$_{38}$N$_3$NiO$_4$ [M+H]$^+$: 628.2105, found: 628.2127.

Ni(II) complexes 4m

Starting from a chiral Ni(II) complex 2 and acrylonitrile 3m with applying the general procedure, the mixture of diastereomers (S,S,S)-4m and (S,S,R)-4m were isolated in a ratio of dr 1:1 as a red powders (combined yield of both diastereomers 40.7 mg, 72%). Diastereoselective ratio (dr value) was determined according to chemical yields of the isolated diastereomers. Yield of the first eluting diastereomer was 20.4 mg and yield of the second eluting was 20.3 mg. Preparative TLC, eluent: CHCl$_3$/acetone (5:1).

1st diastereomer

1H-NMR (400 MHz, CDCl$_3$): δ = 8.10 (d, J = 8.6 Hz, 1H), 8.05 (d, J = 7.4 Hz, 2H), 7.57–7.49 (m, 3H), 7.35 (t, J = 7.6 Hz, 2H), 7.31–7.27 (m, 1H), 7.24–7.12 (m, 2H), 7.03–6.96 (m, 1H), 6.69–6.60 (m, 2H), 4.41 (d, J = 12.6 Hz, 1H), 3.84 (dd, J = 11.3, 3.1 Hz, 1H), 3.73–3.61 (m, 1H), 3.60–3.44 (m, 3H),
3.13–3.00 (m, 1H), 2.84–2.67 (m, 2H), 2.59–2.47 (m, 1H), 2.30–2.21 (m, 1H), 2.13–2.01 (m, 1H), 1.77–1.64 (m, 1H), 0.67 (d, \(J = 6.9 \) Hz, 3H) ppm.

\(^{13}\)C-NMR (101 MHz, CDCl\(_3\)): \(\delta = 180.5, 178.1, 171.3, 142.5, 133.4, 133.3, 132.6, 131.5, 131.2, 130.1, 129.3, 129.1, 129.0, 128.9, 127.7, 127.3, 126.1, 124.0, 122.5, 120.9, 70.2, 66.4, 63.2, 57.4, 39.1, 30.7, 24.3, 21.2, 15.8 ppm.

HRMS (ESI, \(m/z \)) calcd. for C\(_{31}\)H\(_{31}\)N\(_4\)NiO\(_3\)\(^+\) [M+H\(^+\)]: 565.1744, found: 565.1762.

2\(^{nd}\) diastereomer

\(^{1}\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.12–8.03 (m, 3H), 7.63–7.47 (m, 3H), 7.41–7.29 (m, 3H), 7.23–7.11 (m, 2H), 6.93 (d, \(J = 7.4 \) Hz, 1H), 6.71–6.61 (m, 2H), 4.42 (d, \(J = 12.6 \) Hz, 1H), 4.10–3.98 (m, 1H), 3.67–3.46 (m, 4H), 3.09–2.94 (m, 1H), 2.77–2.64 (m, 1H), 2.60–2.42 (m, 2H), 2.29–2.19 (m, 1H), 2.13–2.02 (m, 1H), 1.89–1.78 (m, 1H), 1.26 (d, \(J = 6.9 \) Hz, 3H) ppm.

\(^{13}\)C-NMR (101 MHz, CDCl\(_3\)): \(\delta = 180.4, 176.8, 171.7, 142.3, 133.5, 133.3, 132.9, 132.5, 131.5, 130.5, 129.6, 129.4, 129.03, 129.0, 127.2, 126.9, 126.3, 123.8, 121.0, 120.8, 70.2, 68.0, 63.3, 57.4, 40.7, 30.7, 24.3, 22.3, 18.6 ppm.

HRMS (ESI, \(m/z \)) calcd. for C\(_{37}\)H\(_{38}\)N\(_3\)NiO\(_4\)\(^+\) [M+H\(^+\)]: 565.1744, found: 565.1751.

Ni(II) complexes 4n

Starting from a chiral Ni(II) complex 2 (153.0 mg, 0.3 mmol) and acrylamide 3n with applying the general procedure, the mixture of diastereomers (S,S)-4n and (S,S,R)-4n were isolated in a ratio of \(dr \) 2:1 as a red powders (combined yield of both diastereomers 78.6 mg, 45%). Diastereoselective ratio \((dr \) value) was determined according to chemical yields of the isolated diastereomers. Yield of the first eluting diastereomer was 52.4 mg and yield of the second eluting (S,S,R)-4n was 26.2 mg. Eluent: CHCl\(_3\)/acetone (5:1 to 1:5).

1\(^{st}\) diastereomer (major)

\(^{1}\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.10 (d, \(J = 8.6 \) Hz, 1H), 8.05 (d, \(J = 7.4 \) Hz, 2H), 7.57–7.46 (m, 3H), 7.35 (t, \(J = 7.6 \) Hz, 2H), 7.23–7.11 (m, 3H), 6.94 (d, \(J = 7.1 \) Hz, 1H), 6.73 (br.s, 1H), 6.69–6.62 (m, 2H), 4.93 (br.s, 1H), 4.39 (d, \(J = 12.6 \) Hz, 1H), 3.93 (dd, \(J = 11.5, 4.6 \) Hz, 1H), 3.74–3.61 (m, 1H), 3.57 (d, \(J = 12.6 \) Hz, 1H), 3.52–3.41 (m, 2H), 2.81–2.71 (m, 1H), 2.67–2.46 (m, 3H), 2.29–2.20 (m, 1H), 2.14–2.02 (m, 1H), 1.85–1.73 (m, 1H), 1.10 (d, \(J = 6.0 \) Hz, 3H) ppm.

\(^{13}\)C-NMR (101 MHz, CDCl\(_3\)): \(\delta = 180.3, 179.6, 176.2, 170.8, 142.1, 133.4, 133.2, 132.7, 132.3, 131.5, 130.1, 129.6, 129.0, 128.9, 128.7, 127.4, 126.7, 126.3, 123.8, 120.9, 70.3, 68.8, 63.1, 57.2, 41.5, 31.8, 30.7, 24.2, 17.5 ppm.

HRMS (ESI, \(m/z \)) calcd. for C\(_{31}\)H\(_{33}\)N\(_4\)NiO\(_4\)\(^+\) [M+H\(^+\)]: 583.1850, found: 583.1870.
2nd diastereomer (minor)

1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.10$–8.03 (m, 3H), 7.55–7.45 (m, 3H), 7.34 (t, $J = 7.5$ Hz, 2H), 7.29–7.26 (m, 1H), 7.22–7.09 (m, 2H), 7.04–6.98 (m, 1H), 6.69–6.59 (m, 2H), 5.71 (br.s, 1H), 5.42 (br.s, 1H), 4.39 (d, $J = 12.6$ Hz, 1H), 3.87–3.76 (m, 2H), 3.75–3.63 (m, 1H), 3.53 (d, $J = 12.6$ Hz, 1H), 3.50–3.41 (m, 2H), 2.89 (t, $J = 12.8$ Hz, 2H), 2.77–2.66 (m, 1H), 2.61–2.44 (m, 2H), 2.11–2.00 (m, 1H), 1.68–1.56 (m, 1H), 0.51 (d, $J = 6.2$ Hz, 3H) ppm.

13C-NMR (101 MHz, CDCl$_3$): $\delta = 180.5, 179.4, 178.2, 170.6, 142.2, 133.4, 133.3, 133.2, 132.3, 132.3, 131.6, 129.9, 129.3, 129.0, 128.9, 128.89, 127.9, 127.3, 126.34, 123.9, 120.8, 115.5, 70.3, 69.6, 63.1, 57.4, 40.0, 31.8, 30.7, 24.2, 16.3 ppm.

HRMS (ESI, m/z) calcd. for C$_{37}$H$_{38}$N$_3$NiO$_4^+$ [M+H]$^+$: 583.1850, found: 583.1873.

The structure of (S,S,R)-4n was determined by single crystal X-ray analysis (see Scheme 2 in main text and Part 5 in SI).

Ni(II) complexes 4o

Starting from a chiral Ni(II) complex 2 and β-methyl styrene 3o with applying the general procedure, the mixture of diastereomers (S,S,S)-4o and (S,S,R)-4o were isolated in a ratio of dr 1.5:1 as a red powders (combined yield of both diastereomers 49.2 mg, 78%). Eluent: CHCl$_3$/acetone (5:1). The diastereomers wasn’t separated.

NMR of the mixture of (S,S,S)-4o and (S,S,R)-4o

1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.09$–7.98 (m, 6H), 7.57–7.47 (m, 3H), 7.40–7.28 (m, 8H), 7.20–7.07 (m, 8H), 7.02–6.96 (m, 4H), 6.95–6.88 (m, 2H), 6.87–6.80 (m, 1H), 6.75–6.69 (m, 2H), 6.68–6.57 (m, 3H), 6.45 (d, $J = 7.8$ Hz, 1H), 4.44 (d, $J = 12.7$ Hz, 2H), 4.07–3.99 (m, 1H), 3.82–3.69 (m, 1H), 3.64–3.51 (m, 4H), 3.52–3.41 (m, 4H), 3.13–3.01 (m, 1H), 2.95–2.84 (m, 1H), 2.84–2.68 (m, 3H), 2.61–2.51 (m, 1H), 2.51–2.39 (m, 1H), 2.30–2.20 (m, 1H), 2.12–2.00 (m, 3H), 1.89–1.78 (m, 2H), 1.68–1.58 (m, 2H), 1.56–1.45 (m, 1H), 1.23–1.12 (m, 1H), 0.78 (t, $J = 7.1$ Hz, 3H), 0.73–0.65 (m, 1H), 0.43 (t, $J = 7.2$ Hz, 3H) ppm.

13C-NMR (101 MHz, CDCl$_3$): $\delta = 180.4, 180.3, 179.0, 178.6, 169.9, 169.5, 145.2, 143.0, 142.2, 142.0, 133.7, 133.3, 133.3, 133.1, 133.0, 132.1, 131.9, 131.6, 131.6, 129.8, 129.7, 129.0, 128.98, 128.9, 128.8, 128.4, 128.1, 127.8, 127.6, 127.5, 127.3, 127.3, 127.0, 126.5, 126.2, 125.6, 123.9, 123.8, 120.8, 120.7, 70.3, 70.1, 68.8, 68.6, 63.0, 57.2, 57.1, 44.0, 43.7, 42.9, 42.5, 30.7, 30.66, 30.3, 26.2, 24.1, 24.0, 12.0, 11.5 ppm.

HRMS (ESI, m/z) calcd. for C$_{37}$H$_{38}$N$_3$NiO$_3^+$ [M+H]$^+$: 630.2261, found: 630.2276.
Diastereoselective ratio (dr value) was determined according to the 1H NMR peak areas of Me group in (S,S,S)-4o and (S,S,R)-4o from the isolated mixture of products (partial 1H NMR of the diastereoisomers is shown below), dr 1.5:1 for (S,S,S)-4o/(S,S,R)-4o.

Ni(II) complexes 4p

Starting from a chiral Ni(II) complex 2 and saffrole 3p with applying the general procedure, the mixture of diastereomers (S,S,R)-4p and (S,S,S)-4p were isolated in a ratio of dr 1.1:1 as a red powders (combined yield of both diastereomers 28.3 mg, 42%). Eluent: CHCl$_3$/acetone (5:1). The diastereomers wasn’t separated.

NMR of the mixture of (S,S,S)-4p and (S,S,R)-4p

1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.10–7.97$ (m, 6H), 7.54–7.41 (m, 7H), 7.39–7.29 (m, 5H), 7.18 (t, J = 7.4 Hz, 2H), 7.12 (t, J = 7.4 Hz, 2H), 6.92 (d, J = 6.4 Hz, 1H), 6.86 (d, J = 7.3 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.69–6.59 (m, 7H), 6.53 (s, 1H), 6.45 (d, J = 7.7 Hz, 1H), 5.91–5.85 (m, 4H), 4.43 (d, J = 12.7 Hz, 1H), 4.35 (d, J = 12.6 Hz, 1H), 4.03–3.94 (m, 1H), 3.88–3.79 (m, 1H), 3.68–3.35 (m, 7H), 3.34–3.25 (m, 1H), 3.20–3.05 (m, 1H), 2.75–2.60 (m, 3H), 2.57–2.40 (m, 4H), 2.32–2.20 (m, 2H), 2.14–2.04 (m, 2H), 1.99–1.89 (m, 3H), 1.70–1.60 (m, 1H), 1.48 (dd, J = 13.2, 9.6 Hz, 1H), 1.12 (t, J = 10.4 Hz, 1H), 0.73 (d, J = 6.5 Hz, 3H), 0.35 (d, J = 6.1 Hz, 3H) ppm.
13C-NMR (101 MHz, CDCl$_3$): $\delta = 180.4, 180.3, 179.0, 178.3, 169.8, 169.5, 147.5, 147.4, 145.7, 145.6, 142.2, 142.0, 134.4, 134.3, 133.5, 133.4, 133.2, 133.1, 132.1, 132.0, 131.6, 129.8, 129.76, 129.0, 128.9, 128.88, 127.9, 127.7, 127.6, 126.7, 126.6, 123.9, 123.8, 122.1, 121.9, 120.8, 120.8, 109.7, 109.5, 108.1, 107.9, 100.7, 100.68, 70.3, 69.0, 63.0, 62.9, 57.1, 57.0, 44.3, 43.9, 43.0, 41.2, 31.6, 30.9, 30.7, 30.65, 24.0, 23.4, 20.2, 18.7 ppm.

HRMS (ESI, m/z) calcd. for C$_{38}$H$_{38}$N$_3$NiO$_5^+$ [M+H]$^+$: 674.2159, found: 674.2164.

Diastereoselective ratio (dr value) was determined according to the 1H NMR peak areas of Me group in (S,S,S)-4p and (S,S,R)-4p from the isolated mixture of products (partial 1H NMR of the diastereoisomers is shown below), dr 1.1:1 for (S,S,R)-4p/(S,S,S)-4p.

Ni(II) complexes 4q

Starting from a chiral Ni(II) complex 2 and chalcone 3q with applying the general procedure, the mixture of diastereomers (S,S,S)-4q and (S,S,R)-4q were isolated in a ratio of dr 1:1 as a red powders (combined yield of both diastereomers 43.2 mg, 60%). Eluent: CHCl$_3$/acetone (5:1). The diastereomers wasn’t separated.

NMR of the mixture of (S,S,S)-4q and (S,S,R)-4q

1H-NMR (400 MHz, CDCl$_3$): $\delta = 8.15–8.04$ (m, 6H), 8.00 (d, $J = 8.5$ Hz, 1H), 7.91 (d, $J = 7.6$ Hz, 2H), 7.78 (d, $J = 7.6$ Hz, 2H), 7.63–7.53 (m, 4H), 7.49–7.29 (m, 10H), 7.25–7.11 (m, 9H), 7.06–7.00 ppm.
(m, 5H), 7.00–6.94 (m, 2H), 6.93–6.87 (m, 1H), 6.87–6.76 (m, 2H), 6.72–6.57 (m, 3H), 6.47 (d, \(J = 8.0\) Hz, 1H), 4.47–4.37 (m, 2H), 4.13–4.03 (m, 1H), 3.79–3.66 (m, 2H), 3.64–3.51 (m, 5H), 3.50–3.42 (m, 3H), 3.41–3.31 (m, 1H), 3.26–3.16 (m, 1H), 3.15–2.99 (m, 2H), 2.94–2.78 (m, 1H), 2.77–2.60 (m, 2H), 2.58–2.41 (m, 2H), 2.40–2.30 (m, 1H), 2.28–2.20 (m, 1H), 2.12–1.98 (m, 4H), 1.95–1.84 (m, 1H), 1.80–1.68 (m, 1H) ppm.

\(^{13}\)C-NMR (101 MHz, CDCl\(_3\)): \(\delta = 198.4, 198.1, 180.5, 178.9, 178.7, 178.1, 170.2, 169.4, 143.4, 142.4, 142.3, 142.1, 136.9, 136.7, 133.6, 133.5, 133.3, 133.2, 133.1, 132.8, 132.3, 131.9, 131.7, 131.6, 131.4, 130.0, 129.7, 129.5, 129.1, 129.0, 129.02, 128.97, 128.9, 128.86, 128.6, 128.5, 128.4, 128.39, 128.3, 128.1, 127.9, 127.6, 127.4, 127.37, 127.1, 126.9, 126.6 126.3, 126.1, 123.9, 123.9, 120.8, 120.7, 70.5, 70.3, 68.4, 63.1, 63.1, 57.5, 57.3, 45.8, 43.7, 42.9, 42.1, 38.0, 37.3, 30.8, 30.7, 29.7, 24.1 ppm.

HRMS (ESI, \(m/z\)) calcd. for C\(_{38}\)H\(_{38}\)N\(_3\)NiO\(_5\)\([\text{M}+\text{H}]^+\): 674.2159, found: 674.2164.

Diastereoselective ratio (\(dr\) value) was determined according to the \(^1\)H NMR peak areas of H\(^a\) and H\(^b\) in (\(S,S,S\))-4q and (\(S,S,R\))-4q from the isolated mixture of products (partial \(^1\)H NMR of the diastereoisomers is shown below), \(dr \approx 1:1\) for (\(S,S,R\))-4q/(\(S,S,S\))-4q.

Ni(II) complexes 4r

Starting from a chiral Ni(II) complex 2 and methyl methyl(vinyl)phosphinate 3r with applying the general procedure, the mixture of diastereomers (\(S,S,S\))-4r and (\(S,S,R\))-4r were isolated in a ratio of \(dr\)
1.5:1 as a red powders (combined yield of both diastereomers 33.5 mg, 53%). Eluent: CHCl₃/acetone (1:1) to methanol. The diastereomers wasn’t separated.

NMR of the mixture of (S,S,S)-4r and (S,S,R)-4r (contains the starting 3r as an impurity!)

^{1}H-NMR (400 MHz, CDCl₃): $\delta = 8.14–7.99$ (m, 6H), 7.57–7.43 (m, 6H), 7.40–7.31 (m, 4H), 7.31–7.27 (m, 2H), 7.23–7.16 (m, 2H), 7.16–7.08 (m, 2H), 6.97 (t, $J = 6.7$ Hz, 2H), 6.70–6.63 (m, 3H), 6.61–6.54 (m, 1H), 4.47–4.36 (m, 2H), 4.06–3.96 (m, 1H), 3.90–3.80 (m, 1H), 3.74–3.69 (m, 4H), 3.69–3.64 (m, 4H), 3.59 (d, $J = 10.5$ Hz, 2H), 3.52–3.44 (m, 6H), 3.19–3.02 (m, 1H), 2.83–2.66 (m, 2H), 2.60–2.47 (m, 2H), 2.43–2.32 (m, 1H), 2.27–2.17 (m, 3H), 2.12–2.01 (m, 3H), 1.38 (d, $J = 12.7$ Hz, 3H), 1.23–1.18 (m, 3H), 1.13 (d, $J = 13.0$ Hz, 3H), 0.48 (dd, $J = 17.7$, 7.0 Hz, 3H) ppm.

HRMS (ESI, m/z) calcd. for C$_{32}$H$_{37}$N$_{3}$NiO$_{5}$P$^+$ [M+H$^+$]: 632.1819, found: 632.1814.

Diastereoselective ratio (dr value) was determined according to the ^{1}H NMR peak areas of H^b and H^b in (S,S)-4r and (S,S,R)-4r from the isolated mixture of products (partial ^{1}H NMR of the diastereoisomers is shown below), dr 1.5:1 for (S,S,R)-4r/(S,S,S)-4r.

NMR of the Ni(II) complex (S,R)-5

^{1}H-NMR (400 MHz, CDCl$_3$): $\delta = 8.50$ (d, $J = 8.7$ Hz, 1H), 8.12 (d, $J = 7.0$ Hz, 2H), 7.60–7.43 (m, 6H), 7.26–7.21 (m, 1H), 7.21–7.14 (m, 1H), 7.01 (d, $J = 6.7$ Hz, 1H), 6.78–6.61 (m, 2H), 4.37 (d, $J = 6.0$ Hz, 2H) ppm.
12.4 Hz, 1H), 4.28–4.17 (m, 1H), 3.98–3.83 (m, 1H), 3.74–3.61 (m, 1H), 3.44 (d, \(J = 12.4 \) Hz, 1H), 2.75–2.51 (m, 2H), 2.34–2.20 (m, 2H), 2.04–1.90 (m, 1H), 1.39 (d, \(J = 7.0 \) Hz, 3H) ppm.

NMR of the Ni(II) complex (S,S)-5

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.11–8.02 \) (m, 3H), 7.55–7.41 (m, 3H), 7.36 (t, \(J = 7.6 \) Hz, 2H), 7.26–7.23 (m, 1H), 7.20 (t, \(J = 7.4 \) Hz, 1H), 7.16–7.09 (m, 1H), 6.95 (d, \(J = 7.2 \) Hz, 1H), 6.69–6.58 (m, 2H), 4.41 (d, \(J = 12.6 \) Hz, 1H), 3.91 (dd, \(J = 13.6, 6.8 \) Hz, 1H), 3.81–3.64 (m, 1H), 3.60–3.43 (m, 3H), 2.79–2.67 (m, 1H), 2.60–2.45 (m, 1H), 2.26–2.18 (m, 1H), 2.12–2.01 (m, 1H), 1.59 (d, \(J = 7.0 \) Hz, 3H) ppm.

4. General procedure for the decomposition of the Ni(II) complexes (S,S)-4a, (S,S)-4c and 4r leading to amino acids isolation

To a suspension of the Ni(II) complex 4 (1.96 mmol) in methanol (30.0 mL) was added 6N HCl (20.0 mL) and water (30.0 mL) and the whole was heated at 60 °C. Upon disappearance of the red color of the starting complex, the reaction was stopped. Afterward, the solution was changed to a suspension due to a white precipitate (HCl salt of (S)-BPB) appearing. The precipitate was filtered and washed with water (50.0 mL). The remaining amount of (S)-BPB was extracted with DCM. The aqueous layer was quenched by 25% aqueous NH\(_3\) solution (12.0 mL) until pH = 7 and concentrated to dryness and the residue was chromatographed with a cation exchange resin (Dowex 50X8, H\(^{+}\)-form) (eluent: water and then 5% aqueous solution of ammonia) to afford the desired amino acid as a white powder.

(S)-2-amino-3-(1-methylcyclohexyl)propanoic acid (6a)

Starting from the chiral Ni(II) complex (S,S)-4a with applying the general procedure, the desired product 6a was isolated as a white powder (301.0 mg, yield 80%).

\(^1\)H-NMR (400 MHz, D\(_2\)O): \(\delta = (t, J = 5.7 \) Hz, 1H), 1.93 (dd, \(J = 15.1, 5.3 \) Hz, 1H), 1.53 (dd, \(J = 15.1, 6.2 \) Hz, 1H), 1.43–1.24 (m, 5H), 1.24–1.01 (m, 5H), 0.82 (s, 3H) ppm.

\(^{13}\)C-NMR (101 MHz, D\(_2\)O): \(\delta = 173.2, 49.7, 42.6, 37.1, 36.7, 32.2, 25.5, 23.4, 21.3, 21.25 \) ppm.

HRMS (ESI, \(m/z \)) calcd. for C\(_{10}\)H\(_{20}\)NO\(_2\)\(^+\) [M+H]\(^+\): 186.1489, found: 186.1491.

\([\alpha]_D^{20}–12.5 \) (c 0.2, MeOH), (>99% ee, (S)-isomer).

(S)-2-amino-4-methyl-4-phenylpentanoic acid (6c)

Starting from the chiral Ni(II) complex (S,S)-4c with applying the general procedure, the desired product 6c was isolated as a white powder (316.9 mg, yield 78%).

\(^1\)H-NMR (400 MHz, D\(_2\)O+CD\(_3\)OD): \(\delta = 7.48 \) (d, \(J = 7.5 \) Hz, 2H), 7.37 (t, \(J = 7.8 \) Hz, 2H), 7.24 (t, \(J = 7.3 \) Hz, 1H), 3.37 (dd, \(J = 8.1, 3.8 \) Hz, 1H), 2.52 (dd, \(J = 15.0, 3.8 \) Hz, 1H), 2.00 (dd, \(J = 15.0, 8.2 \) Hz, 1H), 1.44 (d, \(J = 5.8 \) Hz, 6H) ppm.
13C-NMR (101 MHz, D$_2$O+CD$_3$OD): δ = 171.8, 146.4, 128.7, 126.7, 126.0, 50.7, 43.8, 36.5, 28.3, 27.9 ppm.

HRMS (ESI, m/z) calcd. for C$_{12}$H$_{18}$NO$_2$ $^+ [M+H]^+$: 208.1332, found: 208.1336.

[α]$_{D}^{20}$ –7.5 (c 0.2, MeOH), (>99% ee, (S)-isomer).

2-amino-4-(methoxy(methyl)phosphoryl)pentanoic acid (6r)

Starting from the mixture of diastereomers of the Ni(II) complexes (S,S,S)-4r and (S,S,R)-4r with applying the general procedure, the mixture of diastereomers (S,S)-6r and (S,R)-6r were isolated in a ratio of dr 1:1 as a white powder (217.3 mg, yield 53%).

NMR of the mixture of (S,S)-4r and (S,R)-4r

1H-NMR (400 MHz, D$_2$O+CD$_3$OD): δ = 3.84–3.65 (m, 8H), 2.42–2.20 (m, 3H), 2.20–2.00 (m, 2H), 1.93–1.77 (m, 1H), 1.59–1.50 (m, 6H), 1.37–1.16 (m, 6H) ppm.

13C-NMR (101 MHz, D$_2$O+CD$_3$OD): δ = 173.0, 172.6, 52.6, 50.7 (d, $J = 7.2$ Hz), 50.61 (d, $J = 7.0$ Hz), 31.5, 31.3, 31.0, 30.1 (d, $J = 51.4$ Hz), 29.1 (d, $J = 51.4$ Hz), 12.3 (d, $J = 2.0$ Hz), 12.2 (d, $J = 3.0$ Hz), 8.82 (d, $J = 53.0$ Hz), 7.93 (d, $J = 53.0$ Hz) ppm.

31P-NMR (162 MHz, D$_2$O+CD$_3$OD): δ = 64.12 (d, $J = 25.0$ Hz), 63.30 (d, $J = 26.8$ Hz).

HRMS (ESI, m/z) calcd. for C$_7$H$_{17}$NO$_4$P $^+ [M+H]^+$: 210.0890, found: 210.0891.

5. X-ray diffraction study of Ni(II) complexes (S,S)-4a, (S,S)-4c and (S,S,S)-4n

Single-crystal X-ray diffraction experiments for the Ni(II) complexes (S,S)-4a, (S,S)-4c and (S,S,R)-4n were carried out with a Bruker APEX-II CCD diffractometer (graphite monochromated Mo-K$_\alpha$ radiation, $\lambda = 0.71073$ Å, ω-scan technique). The APEX II software$^{[4]}$ was used for collecting frames of data, indexing reflections, determination of lattice constants, integration of intensities of reflections, scaling and absorption correction. All calculations (space group and structure determination, refinements, graphics, and structure reporting) were made using the SHELXL2014$^{[5]}$ and OLEX2$^{[6]}$ program packages. Experimental details and crystal parameters are listed in Table S1. The structures were solved by direct methods and refined by the full-matrix least-squares technique against F^2 with the anisotropic thermal parameters for all non-hydrogen atoms. The hydrogen atoms were placed geometrically and included in the structure factors calculations in the riding motion approximation. The contribution of (S,S,R)-4n to structure factors was excluded using SQUEEZE$^{[7]}$ routine implemented in PLATON software.$^{[8]}$ CCDC 1892731 ((S,S,R)-4n), 1892732 ((S,S)-4c) and 1892733 ((S,S)-4a) data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures.
Structure of the Ni(II) complex (S,S)-4a

Structure of the Ni(II) complex (S,S)-4c

Structure of the Ni(II) complex (S,S,R)-4n
Table S1. Crystallographic data and structure refinement parameters

<table>
<thead>
<tr>
<th>Compound</th>
<th>(S,S)-4a</th>
<th>(S,S)-4c</th>
<th>(S,S,R)-4n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula moiety</td>
<td>C${35}$H${39}$N$_3$NiO$_3$,CCl$_4$</td>
<td>(C${37}$H${37}$N$_3$NiO3)${0.5}$, (H2O)${0.5}$</td>
<td>C${31}$H${32}$N$_4$NiO4, (CH2Cl)${0.5}$,(CCl)${4.5}$</td>
</tr>
<tr>
<td>Brutto formula</td>
<td>C${36}$H${39}$Cl$_3$N$_3$NiO$_3$</td>
<td>C${18.50}$H${19.50}$Ni${1.50}$O${5.50}$</td>
<td>C${32}$H${33}$Cl$_3$N$_4$NiO$_4$</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>762.21</td>
<td>324.21</td>
<td>702.68</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Bruker APEX-II CCD</td>
<td>Bruker APEX-II CCD</td>
<td>Bruker APEX-II CCD</td>
</tr>
<tr>
<td>Anode</td>
<td>[Wavelength, Å]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
<td>monoclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P$_2_1_2_1_2_1$</td>
<td>P12$_1$I</td>
<td>P1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>11.4520(9)</td>
<td>9.8460(4)</td>
<td>9.3790(7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>13.8346(12)</td>
<td>12.0451(5)</td>
<td>13.3790(7)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>22.8016(19)</td>
<td>14.2648(6)</td>
<td>14.9327(8)</td>
</tr>
<tr>
<td>α, °</td>
<td>90</td>
<td>90</td>
<td>81.0080(10)</td>
</tr>
<tr>
<td>β, °</td>
<td>90</td>
<td>110.1810(10)</td>
<td>89.6580(10)</td>
</tr>
<tr>
<td>γ, °</td>
<td>90</td>
<td>90</td>
<td>80.2760(10)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>3612.5(5)</td>
<td>1587.89(11)</td>
<td>1822.85(17)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Density, g cm$^{-3}$</td>
<td>1.401</td>
<td>1.356</td>
<td>1.280</td>
</tr>
<tr>
<td>T, K</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>θ range (deg)</td>
<td>1.89–27.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ, mm$^{-1}$</td>
<td>0.872</td>
<td>0.656</td>
<td>0.790</td>
</tr>
<tr>
<td>F(000)</td>
<td>1584</td>
<td>684</td>
<td>728</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>SADABS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{\text{max}}/T_{\text{min.}}$</td>
<td>0.5675/0.7461</td>
<td>0.6893/0.7459</td>
<td>0.6851/0.7461</td>
</tr>
<tr>
<td>Collected reflections</td>
<td>29481</td>
<td>20201</td>
<td>17604</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>7088</td>
<td>8940</td>
<td>14086</td>
</tr>
<tr>
<td>Observed reflections $(I > 2σ(I))$</td>
<td>5554</td>
<td>7901</td>
<td>12635</td>
</tr>
<tr>
<td>Parameters</td>
<td>425</td>
<td>408</td>
<td>801</td>
</tr>
<tr>
<td>R$_{\text{int}}$</td>
<td>0.0752</td>
<td>0.0301</td>
<td>0.0158</td>
</tr>
<tr>
<td>20min - 20max, º</td>
<td>3.444 - 52.0000</td>
<td>3.042 - 59.366</td>
<td>3.128 - 51.998</td>
</tr>
<tr>
<td>RIa (on F for obs. refls)</td>
<td>0.0634</td>
<td>0.0372</td>
<td>0.0545</td>
</tr>
<tr>
<td>wRb (on F2 for all refls)</td>
<td>0.1773</td>
<td>0.0899</td>
<td>0.1513</td>
</tr>
<tr>
<td>GOFc</td>
<td>1.031</td>
<td>1.005</td>
<td>1.037</td>
</tr>
<tr>
<td>$P_{\text{min}}/P_{\text{max}}$, eÅ$^{-3}$</td>
<td>-0.983/1.654</td>
<td>-0.686/0.774</td>
<td>-0.556/0.868</td>
</tr>
</tbody>
</table>

$^a R = \Sigma | F_o | - | F_c | / \Sigma | F_o |, \quad ^b R_w = [\Sigma (w(F_o^2 - F_c^2)^2)/\Sigma (w(F_o^2))]^{1/2},$

cGOF = $[\Sigma w(F_o^2 - F_c^2)^2/(N_{\text{obs}} - N_{\text{param}})]^{1/2}$
6. References

7. Copies of 1H- and 13C-NMR spectra

1H and 13C NMR spectra of the Ni(II) complex 4a

S26
1H and 13C NMR spectra of the Ni(II) complex 4b
1H and 13C NMR spectra of a Ni(II) the complex 4c
The 1H and 13C NMR spectra of the Ni(II) complex 4d.
1H and 13C NMR spectra of the Ni(II) complex 4e
1H and 13C NMR spectra of the Ni(II) complex 4f
1H and 13C NMR spectra of the Ni(II) complex 4g

S32
\[1^H \text{ and } 13^C \text{ NMR spectra of the Ni(II) complex } 4h \]
1H and 13C NMR spectra of the 1$^{\text{st}}$ diastereomer of the Ni(II) complex 4i
1H and 13C NMR spectra of the 2nd diastereomer of the Ni(II) complex 4i
1H and 13C NMR spectra of the 1st diastereomer (major) of the Ni(II) complex 4j
1H and 13C NMR spectra of the 1$^{\text{st}}$ diastereomer (major) of the Ni(II) complex 4k
1H and 13C NMR spectra of the 2nd diastereomer (*minor*) of the Ni(II) complex 4k
1H and 13C NMR spectra of the 1st diastereomer (major) of the Ni(II) complex 4l
\[^1H \text{ and } ^13C \text{ NMR spectra of the 2}nd \text{ diastereomer (minor) of the Ni(II) complex 4l} \]
1H and 13C NMR spectra of the 1st diastereomer of the Ni(II) complex 4m
1H and 13C NMR spectra of the 2nd diastereomer of the Ni(II) complex 4m
1H and 13C NMR spectra of the 1st diastereomer (major) of the Ni(II) complex 4n

543
1H and 13C NMR spectra of the 2nd diastereomer (minor) of the Ni(II) complex 4n
^{1}H and ^{13}C NMR spectra of the mixture of the diastereomers of the Ni(II) complex 40
1H and 13C NMR spectra of the mixture of the diastereomers of the Ni(II) complex 4p
1H and 13C NMR spectra of the mixture of the diastereomers of the Ni(II) complex 4q
1H NMR spectra of the mixture of the diastereomers of the Ni(II) complex (S,S)-4r and (S,S,R)-4r

(contains the starting 3r as an impurity!)
1H NMR spectra of the Ni(II) complex (S,R)-5 and (S,S)-5
1H and 13C NMR spectra of the amino acid (S,S)-6a
\(^1\)H and \(^{13}\)C NMR spectra of the amino acid (S,S)-6c
1H and 13C NMR spectra of the mixture of the diastereomers of the amino acid $6r$
31P NMR spectra of the mixture of the diastereomers of the amino acid 6r