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1 Methods

UV-vis absorption spectra were recorded on a JASCO V670 or V770 spectrometer.
Fluorescence spectra for titrations were recorded on a PTI QM4-2003 spectrometer. NMR
spectra were recorded on a Bruker Avance 111 HD 400 or 600 MHz spectrometer. Chemical
shifts (o) are internally referenced to the residual proton solvent resonances or to natural
abundance carbon resonances. The abbreviations for signal multiplicities are s = singlet, d =
doublet, quint = quintet, m = multiplet. High resolution ESI-TOF mass spectrometry was
performed on a Bruker Daltonic microTOF focus spectrometer. All solvents and reagents
were purchased from commercial sources and used without further purification. Solvents for

spectroscopic studies were of spectroscopic grade and used without further purification.

For the titration experiments, a solution of both PBI cyclophane [2PBI] (c = 1.0 -
107°> mol L™) and the guest in excess in the corresponding solvent was titrated to a solution of
pure [2PBI] of the same concentration in the same solvent keeping the host concentration
constant during the experiment. The UV-vis and fluorescence titration data were fitted
globally from 540 — 588 nm and from 625 — 685 nm, respectively, to equation (S1)* with &,

eng aNd &4, as extinction coefficients at a given wavelength of the free host, the host-guest
complex and the measured extinction coefficient, ¢{ and cp as total concentrations of the host

and the guest and K as binding constant. K, was treated as shared variable.

_ €hg~Eh
€obs — €h + 0
h

0 ! 0 Ny’ 0
5 <ch+cg+ai\/(ch+cg+a) —4chcg) (S1)

For the time-dependent NMR studies, an NMR tube with a solution of free [2PBI] in CDCl3
(0.5 mL) with the integration standard dimethyl sulphone as well as a solution of (S)-G4 of
the desired concentration in CDCI; were cooled to 217 K in an acetone/dried ice bath.
Directly before the measurement the guest solution (0.2 mL) was added to the NMR tube with
the host, so that in the measured samples the concentrations were ¢y ([2PBI]) = 5 -
10 mol L™ and ¢ ((S)-G4) = 1.0 - 10 mol L™, 25 - 10°mol L™ or 5.0 - 10 mol L},
respectively. The sample was immediately placed in a cooled and shimmed NMR
spectrometer where consecutive proton spectra were measured automatically (number of

scans: 40, acquisition time: 2.5 s). Data treatment was carried out according to literature.
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2 Synthesis of (S)-G3 and (S)-G4
Boc-protected (S)-1-(3-bromophenyl)ethylamine (5), which was used as precursor for the

synthesis of (S)-G3 was prepared according to literature.’
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Scheme S1. Synthesis of the chiral guests (S)-G3 and (S)-G4.
Synthesis of (S)-G3
The reaction conditions were adopted from literature.*
OO Under nitrogen atmosphere, 5° (800 mg, 2.66mmol, 1leq), 1-

naphthylboronic acid (550 mg, 3.20 mmol, 1.2 eq.), Pd.dba; (11.8 mg,
C HWO(OIB“ 12.9 pmol, 0.5 mol%) and PPhs (140 mg, 532 umol, 0.2 eq.) were dissolved
in dry toluene (10.8 mL). The mixture was stirred at room temperature. After 10 min, Na,CO3
(1.13 g, 10.7 mmol, 4 eq.) and a mixture (1/1 vol%) of H,O/EtOH (3 mL) were added and the
reaction was heated to 95 °C for 24 h. After cooling down to room temperature, the mixture
was extracted with CH,Cl, (3x). The organic extracts were combined, washed with H,O (1x)
and dried over Na,SO,. After evaporation of the solvent, the crude product was purified by
column chromatography (silica gel, CH,Cl,) and flash chromatography (silica gel,
CHCl,/pentane 80/20 — 100/0). The product (638 mg, 1.84 mmol, 69%) was obtained as a
colorless, glassy solid. Mp: 44 — 45 °C. *"H NMR (CDCls, 400 MHz): 6= 7.93 — 7.86 (m, 3H,
CHaryl), 7.55 — 7.37 (M, 8H, CHapy), 5.06 — 4.56 (br m, 2H, NH, CH), 1.51 (d, *J = 6.2 Hz,
3H, CHa), 1.44 (s, 9H, (CHa3)3) ppm. *C NMR (CDCls, 100 MHz): 6= 155.2, 144.2, 141.1,
140.3, 133.9, 131.7, 129.0, 128.6, 128.4, 127.8, 127.5, 127.1, 126.2, 126.1, 125.9, 125.5,
125.0, 79.6, 50.3, 28.5, 23.0 ppm. HRMS (ESI, pos. mode, CH3CN/CH3Cl): m/z 370.17736
[M+Na]®, calculated for Cy3HosNNaO,": 370.17775.
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Synthesis of acetyl-protected (S)-1-(3-bromophenyl)ethylamine (6)
The reaction conditions were adopted from literature.’

Br Under nitrogen atmosphere, (S)-1-(3-bromophenyl)ethylamine (714 uL, 1.00 g,
Hw( 5.00 mmol, 1 eq.) was dissolved in dry CH,Cl; (5 mL). After the addition of Ac,0
(708 pL, 765 mg, 7.50 mmol, 1.5eq) and NEt; (1.04 mL, 759 mg, 7.50 mmol,
1.5 eq.) the reaction was stirred overnight at room temperature. Then it was successively
washed with 2 N HCI (1x), saturated aqueous NaHCO3 solution (1x) and brine (1x). The
organic phase was dried over Na,SO,. After removal of the solvent the crude product was
purified by column chromatography (silica gel, CH,CIl,/CH3;OH = 100/5) to give 1.10 g
(453 mmol, 91%) of a colorless oil. 'H NMR (CD,Cl,, 400 MHz): 6= 7.46 — 7.35 (m, 1H,
CHany), 7.40 — 7.38 (m, 1H, CHapyi), 7.27 — 7.20 (M, 2H, CHayyi), 5.83 (br s, 1H, NH), 4.99
(quint, 1H, , 3J = 7.1 Hz, CH), 1.94 (s, 3H, CHs) 1.43 (d, 3J = 7.0 Hz, 3H, CHs) ppm. **C
NMR (CD,Cl,, 100 MHz): 6= 169.3, 146.8, 130.6, 130.5, 129.4, 125.3, 122.9, 48.8, 23.5,
22.2 ppm. HRMS (ESI, pos. mode, CH3;CN/CH3Cl): m/z 264.00005 [M+Na]®, calculated for
C1oH1,BrNNaO™: 263.99945,

Synthesis of (S)-G4
The reaction conditions were adopted from literature.*

OO Under nitrogen atmosphere, 6 (1.00 g, 4.13 mmol, 1 eq.), 1-naphthylboronic
acid (852 mg, 4.96 mmol, 1.2 eq.), Pd>dbasz (19 mg, 20.7 umol, 0.5 mol%) and

O H\(r)( PPh; (21.7 mg, 82.6 umol, 0.02 eq.) were dissolved in dry toluene (12.0 mL).
The mixture was stirred at room temperature. After 10 min, Na,COs (876 g, 8.26 mmol, 2 eq.)
and a mixture (1/1 vol%) of H,O/EtOH (4 mL) were added and the reaction was heated to
95 °C for 24 h. After cooling down to room temperature, the mixture was extracted with
CH.Cl, (3x). The organic extracts were combined, washed with H,O (1x) and dried over
Na,SO,4. After evaporation of the solvent, the crude product was purified by column
chromatography (silica gel, CH,Cl,) and flash chromatography (silica gel, CH,Cl,/pentane
80/20 — 100/0). The product (705 mg, 2.44 mmol, 59%) was obtained as a colorless, glassy
solid. Mp: 52 — 54 °C. 'H NMR (CDCl3, 400 MHz): 5= 7.92 — 7.86 (m, 3H, CHay), 7.55 —
7.36 (M, 8H, CHayi), 5.92 (d, 1H, 3J = 7.3 Hz, NH), 5.22 (quint, 1H, , °J = 7.3 Hz, CH), 1.98
(s, 3H, CH3) 1.53 (d, 3J = 6.9 Hz, 3H, CHs) ppm. *C NMR (CDCls;, 100 MHz): 5= 169.3,
143.4, 141.2, 140.1, 133.9, 131.6, 129.2, 128.7, 128.4, 127.9, 127.8, 127.1, 126.2, 126.0,
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125.9, 125.5, 125.3, 48.9, 28.5, 23.6, 22.1 ppm. HRMS (ESI, pos. mode, CH3CN/CH3Cl): m/z
312.13575 [M+Na]", calculated for CooH;sNNaO™: 312.13588.

3 Temperature-dependent 'H NMR spectra
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Fig. S1. Temperature-dependent *H NMR spectra (C,D,Cl,, 400 MHz) of [2PBI] (c =1 - 10™* mol L™) in the presence of
8 equivalents of G1 from 360 K to 260 K in steps of 10 K. Signals of the encapsulated guest G1 are assigned as 1, 2. and 3..
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Fig. S2. Temperature-dependent *H NMR spectra (CDCl,, 600 MHz) of [2PBI] (c=5 - 10 *mol L™) from 324 K to 217 K.
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Fig. S3. Excerpt of the temperature-dependent *H NMR spectra (CDCl;, 600 MHz) of [2PBI] (c = 5 - 10 *mol L) in the
presence of 5 eq. of (S)-G4 from 324 K to 217 K. Signals of the host in the host-guest complex (S)-G4c[2PBI] are assigned
with a. — e.. Peaks assigned with a * correspond to aromatic signals of bound (S)-G4.
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4 Host-guest titration experiments
|

a) 104 b) 10 —0eq. G1
0.8 0.8 1
. 06 0.6-
< -3
0.4+ 0.4
0.24 0.24
0.0 T T T T 0.0 T T =
450 500 550 600 650 700 600 650 700 750 800
2 (nm) A (nm)
C) €Qg, d) €0g,
100 0.1 1 10 100
1.0 - 1 1,0 T 1 1 1 1
1.04 0.9 . -2
0.9 0.84 a3 ”
0.9 0.7 =
£ £0.6 -6
0.8 1234585 506 0 1 2 3 4 5
< (cs) X 10° = 054 (g " x10*
0.8
0.4
0.7 1
0.34
0.7 1 0.2]
]
T T T T T T T T
1E-6 1E-5 1E-4 0.001 1E-6 1E-5 1E-4 0.001
Cg, (Mol L) Cq, (Mol L)

Fig. S4. (a) UV-vis and (b) fluorescence titration (e = 530 nm) of [2PBI] (co = 1 - 10° mol L™) with G1 in C,H,Cl, at
298 K. (c) Plots of UV-vis (598 nm) and (d) fluorescence (641 nm) titration data points as a function of guest concentration
and fitting with a 1:1 binding model; insets: Benesi-Hildebrand plots showing a 1:1 stoichiometry of the host-guest complex.
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Fig. S5. (a) UV-vis and (b) fluorescence titration (1ex = 530 nm) of [2PBI] (co = 1 - 107> mol L) with (S)-G2 in CHClI; at
298 K. (c) Plots of UV-vis (586 nm) and (d) fluorescence (635 nm) titration data points as a function of guest concentration
and fitting with a 1:1 binding model; insets: Benesi-Hildebrand plots showing a 1:1 stoichiometry of the host-guest complex.
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Fig. S6. (a) UV-vis and (b) fluorescence titration (1ex = 530 nm) of [2PBI] (co = 1 - 107> mol L) with (S)-G3 in CHCI, at
298 K. (c) Plots of UV-vis (586 nm) and (d) fluorescence (635 nm) titration data points as a function of guest concentration
and fitting with a 1:1 binding model; insets: Benesi-Hildebrand plots showing a 1:1 stoichiometry of the host-guest complex.
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Fig. S7. (a) UV-vis and (b) fluorescence titration (1ex = 530 nm) of [2PBI1] (¢, = 1 - 10° mol L) with (S)-G4 in CHClI; at
298 K. (c) Plots of UV-vis (586 nm) and (d) fluorescence (635 nm) titration data points as a function of guest concentration
and fitting with a 1:1 binding model; insets: Benesi-Hildebrand plots showing a 1:1 stoichiometry of the host-guest complex.
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Fig. S8. (a) UV-vis and (b) fluorescence titration (e = 530 nm) of [2PBI] (¢, = 1 - 107° mol L™%) with (R)-G4 in CHCI; at
298 K. (c) Plots of UV-vis (586 nm) and (d) fluorescence (635 nm) titration data points as a function of guest concentration
and fitting with a 1:1 binding model; insets: Benesi-Hildebrand plots showing a 1:1 stoichiometry of the host-guest complex.

Table S1. Comparison of the binding constants K, and the CD effects of the chiral guests (S)-G2 — (S)-G4 towards host
[2PBI] in CHCI; at 298 K.

K.Y Ky DKL Ae
guest g°
(L mol™) (L mol™) (L mol™) (L mol*em™)
(S)-G2 14.7 15.4 15.1 +2 (580 nm) +43 10°
(S)-G3 139 194 167 + 27 (581 nm) +37 10
(S)-G4 285 208 247 + 38 (585 nm) +6.1 107
(R)-G4 344 267 306 — 36 (585 nm) -57 10*

& Average from UV-vis and fluorescence titration experiments. ® Dissymetry factor g = Aele.
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Fig. S9. *H NMR titration (CDCl3, 600 MHz, 217 K,) of [2PBI1] (co = 5 - 10 * mol L ™) with (S)-G4. Signals of the host in the
host-guest complex (S)-G4c[2PBI] are assigned with a. — e.. Peaks assigned with a red * correspond to aromatic signals of
bound (S)-G4.
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Fig. S10. 'H-'H ROESY (600 MHz, CDCl,, 250 K) of [2PBI] (c =5 - 10™* L mol2) in the presence of 5 eq. of (S)-G4.
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5 Kinetic 'H NMR studies
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Fig. S11. Time-dependent *H NMR spectra (600 MHz, CDCls, 217 K, dimethyl sulphone as integration standard) of [2PBI]
(co=15 - 10™*mol L) after the addition of 10 eq. of (S)-G4 (right). Excerpt thereof showing the PBI core protons (left).
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Fig. S12. (a) Plot of the complex concentration (S)-G4c[2PBI] as a function of time after the addition of 10 eq. of (S)-G4.
(b) Plot showing the first order kinetics for the approach to the complexation equilibrium after the addition of 10 eq. of (S)-

G4.
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Fig. S13. Time-dependent *H NMR spectra (600 MHz, CDCls, 217 K, dimethyl sulphone as integration standard) of [2PBI]
(co=5-10"*mol L) after the addition of 5 eq. of (S)-G4 (right). Excerpt thereof showing the PBI core protons (left).
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Fig. S14. (a) Plot of the complex concentration (S)-G4c[2PBI] as a function of time after the addition of 5 eq. of (S)-G4. (b)
Plot showing the first order kinetics for the approach to the complexation equilibrium after the addition of 5 eq. of (S)-G4.
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Fig. S15. Time-dependent *H NMR spectra (600 MHz, CDCls, 217 K, dimethyl sulphone as integration standard) of [2PBI]
(co=5-10"*mol L) after the addition of 2 eq. of (S)-G4 (right). Excerpt thereof showing the PBI core protons (left).
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Fig. S16. (a) Plot of the complex concentration (S)-G4c[2PBI] as a function of time after the addition of 2 eq. of (S)-G4. (b)
Plot showing the first order kinetics for the approach to the complexation equilibrium after the addition of 2 eq. of (S)-G4
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6 Characterization data
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Fig. S18. 3C NMR (CDCl;, 100 MHz, 295 K) of (S)-G3
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Fig. S23. High resolution mass spectrum (ESI, pos. mode, CH3CN/CH3Cl) of (S)-G3.
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Fig. S 24. High resolution mass spectrum (ESI, pos. mode, CH;CN/CH;CI) of (S)-G4.
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Fig. S25. High resolution mass spectrum (ESI, pos. mode, CH;CN/CH5CI) of 6.
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