Electronic Supplementary Information for:

Irazema J. Islas,‡a Dillan Stengel,‡a Cesar A. Garcia, a J. Bennett Addison, a George N. Samaan, a Gregory P. Holland, a and Byron W. Purse* a,b

a Department of Chemistry and Biochemistry and b the Viral Information Institute, San Diego State University, San Diego, CA 92129, USA. E-mail: bpurse@sdsu.edu

Table of Contents

1. Additional molecular models for encapsulated fluorene, fluoranthene, and pyrene S2-S3
2. Static solid-state 2H NMR Spectra of fluorene-d_2 encapsulated in 1a S3
3. Static solid-state 2H NMR Spectra of fluoranthene-d_{10} encapsulated in 1a S4
4. Static solid-state 2H NMR Spectra of pyrene-d_{10} encapsulated in 1a S5
5. Static solid-state 2H NMR Spectra of fluorene-d_2 encapsulated in 1b S6
6. Static solid-state 2H NMR Spectra of fluoranthene-d_{10} encapsulated in 1b S6
7. Static solid-state 2H NMR Spectra of pyrene-d_{10} encapsulated in 1b S7
8. Static solid-state 2H NMR spectra of guests fluorene-d_2, fluoranthene-d_{10}, and pyrene-d_{10} S8
9. Static solid-state 2H NMR Spectra of 5α-2,4-(2H$_4$)-cholestan-3-one S8
10. Differential scanning calorimetry of fluorene, fluoranthene, and pyrene each milled with either 1a or 1b pyrogallol[4]arene S9
11. 1H NMR Spectra of 1a in CDCl$_3$ alone, or with fluorene, fluoranthene, or pyrene as guest S10
12. 1H NMR Spectra of 1b in CDCl$_3$ alone, or with fluorene, fluoranthene, or pyrene as guest S10
13. X-ray powder diffraction spectra S11
14. General Experimental and Synthetic Details S13
15. References S15
All molecular models were prepared in Spartan '08. Geometry minimizations were performed by fixing the atoms of the hexamer as determined from an X-ray crystal structure and minimizing the guests on the interior at the AM1 level of theory. Alkyl groups have been truncated from the models for clarity.

Figure S1. Molecular model for encapsulated fluorene in 1₆.

Figure S2. Molecular model for encapsulated fluoranthene in 1₆.
Figure S3. A, Molecular model for encapsulated pyrene in 1_6. B, Space-filling version of A, rotated, showing tightness of guest fit.

Figure S4. Static solid-state 2H NMR spectra of 1_{a_6} decyl pyrogallol[4]arene-encapsulated fluorene-d_2 between 0°C and 60°C. The maximum intensity of the 0°C to 45°C spectra were scaled to the same height as the 60°C spectra. The spectra at lower temperature have less signal intensity when normalized using the same number of scans (8192) and the same vertical display (not shown).
Figure S5. Static solid-state 2H NMR spectra of 1a$_6$ decyl pyrogallo[4]arene-encapsulated fluoranthene-d_{10} between 0°C and 60°C. The maximum intensity of the 0°C to 45°C spectra were scaled to the same height as the 60°C spectra. The spectra at lower temperature have less signal intensity when normalized using the same number of scans (8192) and the same vertical display (not shown).
Figure S6. Static solid-state 2H NMR spectra of 1a$_6$ decyl pyrogallol-[4]arene-encapsulated pyrene-d_{10} between 0°C and 60°C. The maximum intensity of the 0°C to 45°C spectra were scaled to the same height as the 60°C spectra. The spectra at lower temperature have less signal intensity when normalized using the same number of scans (8192) and the same vertical display (not shown).
Figure S7. Static solid-state 2H NMR spectra of 1b$_6$ propyl pyrogallol[4]arene-encapsulated fluorene-d_2 between 0°C and 60°C. The maximum intensity of the 0°C to 45°C spectra were scaled to the same height as the 60°C spectra. The spectra at lower temperature have less signal intensity when normalized using the same number of scans (8192) and the same vertical display (not shown).

Figure S8. Static solid-state 2H NMR spectra of 1b$_6$ propyl pyrogallol[4]arene-encapsulated fluoranthene-d_{10} between 0°C and 60°C. The maximum intensity of the 0°C to 45°C spectra were scaled to the same height as the 60°C spectra.
Figure S9. Static solid-state 2H NMR spectra of 1b$_6$ propyl pyrogallol[4]arene-encapsulated pyrene- d_{10} between 0°C and 60°C. The maximum intensity of the 0°C to 45°C spectra were scaled to the same height as the 60°C spectra.
Figure S10. Static solid-state 2H NMR spectra of guests fluorene-d_5, fluoranthene-d_{10}, and pyrene-d_{10} at 60°C. Each spectra is scaled differently to show their most prominent features.

Figure S11. Static solid-state 2H NMR spectra of 5α-2,4-(2H$_4$)-cholestan-3-one at 60°C.
Figure S12. Differential scanning calorimetry of fluorene, fluoranthene, and pyrene each milled with either \textit{1a}_6 (DPG) or \textit{1b}_6 (PPG). The asterisks indicate the first heating cycle.
Figure S13. Solution 1H NMR spectra of decyl pyrogallol[4]arene (DPG) 1a in CDCl$_3$ and with encapsulated fluorene, fluoranthene, or pyrene. (500 MHz; 298 K)

Figure S14. Solution 1H NMR spectra of propyl pyrogallol[4]arene (PPG) 1b in CDCl$_3$ with encapsulated fluorene, fluoranthene, or pyrene. (500 MHz; 298 K)
Figure S15. Solution 1H NMR spectra of propyl pyrogallol[4]arene (PPG) $1b_6$ in CDCl$_3$ with encapsulated fluorene, fluoranthene, or pyrene. (500 MHz; 298 K)

Figure S16. Powder x-ray diffraction spectra of $1a_6$ (red) and $1b_6$ (blue) with encapsulated fluoranthene.
Figure S17. Powder x-ray diffraction spectra of 1a₆ (red) and 1b₆ (blue) with encapsulated fluorene

All powder X-Ray diffraction experiments were acquired on a Panalytical XPert PRO diffractometer using Cu K X-ray tube radiation and a voltage of 45 kV and 40 mA. The diffraction pattern was scanned over the angular range of 5–45° with a step size of 0.04° and the sample was held at room temperature (296 K).
General Experimental

All manipulations were carried out under a nitrogen atmosphere. All glassware was oven dried immediately prior to use. All reagents, guests, and solvents were obtained from commercial sources and used without further purification, with the following exceptions. Solution 1H NMR spectra were acquired on Varian 400 MHz, Varian 500 MHz, and Boker 600 MHz NMR spectrometers and recorded at 298 K. Chemical shifts are referenced to the residual solvent peaks and given in parts per million (ppm). Deuterated NMR solvents and deuterated guests, except for fluorene-d2, were purchased from Cambridge Isotope Laboratories. Pyrogallo[4]arenes were synthesized as previously reported. 5α-2,4-(2H4)-cholestan-3-one and fluorene-d2 were synthesized as described below using commercial starting materials.

5α-2,4-(2H4)-cholestan-3-one. 5α-cholestan-3-one (300 mg, 0.77 mmol) is suspended in D2O (1.5 ml) and dry dioxane (1.5 ml) then sodium metal (178 mg, 7.7 mmol) is added and the reaction heated to 90 °C for 3 hours. The reaction is monitored by MS until a mass increase of > 3 amu is observed, indicating the replacement of, on average, at least three protons with deuterons. The reaction is cooled to 0 °C, and the product extracted with diethyl ether and the solvent is evaporated to give white product, which had, on average, 75% substitution of deuterium for the four hydrogen atoms α to the carbonyl (285 mg, 95% yield). MS (APCI) m/z: [M + H]⁺ Calcd for C27H43DO 391.6; Found 390.5

Figure S18. Solution 1H NMR of 5α-cholestan-3-one and 5α-2,4-(2H4)-cholestan-3-one. The intensity of the peaks between 2.45 and 2.05 are reduced in the 5α-2,4-(2H4)-cholestan-3-one compared to 5α-cholestan-3-one. (500 MHz; 298 K)
Fluorene-\textit{d}_2.4 1.65g (9.93 mmol) of fluorene was dissolved in 10 mL DMSO-\textit{d}_6 under N\textsubscript{2}. Then 1.2 g (50 mmol) of NaH was added at 23 °C and stirred for 2 hours. The reaction was quenched with D\textsubscript{2}O, the solid product was collected by filtration, and washed with H\textsubscript{2}O. The product was then purified by flash chromatography using a hexane to ethyl acetate gradient to yield the desired product, a white crystalline powder. 1H NMR (500 MHz, CDCl\textsubscript{3}): δ 7.78 (1H, dd) δ 7.54 (1H, dd) δ 7.37 (1H, t) δ 7.30 (1H, t). MS (APCI) m/z: [M + H]+ Calcd for C\textsubscript{13}H\textsubscript{9}D\textsubscript{2} 169.2; Found 169.1
References

