Supporting Information

The Absolute Configurations of Hyperilongenols A–C: Rare 12,13-Seco-Spiro cyclic Polycyclic Poly prenylated Acylphloroglucinols with Enolizable β,β’-Tricarbonyl Systems from Hypericum longistylum Oliv.

Na Zhang,a Zhengyi Shi,a Yi Guo,a Shuangshuang Xie,a Yuben Qiao,a Xiao-Nian Li,b Yongbo Xue,*a Zengwei Luo,a Hucheng Zhu,a Chunmei Chen,a Linzhen Hu,a,c Yonghui Zhang*a

aHubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China.
bState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan Province, People’s Republic of China.
cNational & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University Wuhan 430062, Hubei Province, People’s Republic of China.

E-mails:
zhangyh@mails.tjmu.edu.cn (Y.Z.); yongboxue@mail.hust.edu.cn (Y.X.)
CONTENTS

Figures S1-S8. ¹H NMR (800 MHz) spectra of compound 1 (Recorded in C₅D₅N/CDCl₃, 343 K-280 K) ..1

Figures S9-S11. ¹H NMR (600 MHz) spectra of compound 1 in the region of 0-20 ppm (Recorded in C₅D₅N/CDCl₃, 313 K-280 K) ..5

Figure S12. Key ¹H-¹H COSY and HMBC correlations of compounds 2-3 ..6

Figures S13-S14. ¹H NMR (600 MHz) spectra of compounds 2-3 in the region of 0-20 ppm (Recorded in C₅D₅N, 298 K) ...7

Figures S15-S18. ¹H NMR (600 MHz) spectra of compounds 2-3 in the region of 0-20 ppm (Recorded in CDCl₃, 313 K/298 K) ...8

Figures S19-S20. The mutual transformation of enol tautomers of compounds 2-310

Figure S21. Experimental ECD spectra of 1-3 ...10

Figures S22-S24. ¹H NMR (600 MHz) spectra of compounds 1-3 (Recorded in DMSO-d₆, 298 K) ..11

Table S1 PPAPs with enolizable β,β'-triC or β-diC systems ..12

Table S2. Antibacterial activities of compounds 1-3 with MIC₅₀ Values ± SD (μM)16

Figures S25–S51. 1D and 2D NMR (C₅D₅N, 298 K), HRESIMS, UV, IR spectra of compounds 1–3 ..17

Figures S52–S116. 1D and 2D NMR, HRESIMS spectra of compounds 4–1332

Figures S117–S119. Experimental ECD spectra of 4–13 ..72
Figure S1. 1H NMR (800 MHz) spectrum of compound 1 (Recorded in C$_5$D$_5$N, 343 K)

Figure S2. 1H NMR (800 MHz) spectrum of compound 1 (Recorded in C$_5$D$_5$N, 313 K)
Figure S3. 1H NMR (800 MHz) spectrum of compound 1 (Recorded in C$_5$D$_5$N, 298 K)

Figure S4. 1H NMR (800 MHz) spectrum of compound 1 (Recorded in C$_5$D$_5$N, 280 K)
Figure S5. 1H NMR (800 MHz) spectrum of compound 1 (Recorded in CDCl$_3$, 313 K)

Figure S6. 1H NMR (800 MHz) spectrum of compound 1 (Recorded in CDCl$_3$, 308 K)
Figure S7. 1H NMR (800 MHz) spectrum of compound 1 (Recorded in CDCl$_3$, 298 K)

Figure S8. 1H NMR (800 MHz) spectrum of compound 1 (Recorded in CDCl$_3$, 280 K)
Figure S9. 1H NMR (600 MHz) spectrum of compound 1 (Recorded in C$_5$D$_5$N, 298 K)

Figure S10. 1H NMR (600 MHz) spectrum of compound 1 (Recorded in CDCl$_3$, 313 K)
Figure S11. 1H NMR (600 MHz) spectrum of compound 1 (Recorded in CDCl$_3$, 298 K)

Figure S12. Key 1H-1H COSY (black bonds) and HMBC (arrows) correlations of compounds 2–3.
Figure S13. 1H NMR (600 MHz) spectrum of compound 2 (Recorded in C$_5$D$_5$N, 298 K)

Figure S14. 1H NMR (600 MHz) spectrum of compound 3 (Recorded in C$_5$D$_5$N, 298 K)
Figure S15. 1H NMR (600 MHz) spectrum of compound 2 (Recorded in CDCl$_3$, 313 K)

Figure S16. 1H NMR (600 MHz) spectrum of compound 2 (Recorded in CDCl$_3$, 298 K)
Figure S17. 1H NMR (600 MHz) spectrum of compound 3 (Recorded in CDCl$_3$, 313 K)

Figure S18. 1H NMR (600 MHz) spectrum of compound 3 (Recorded in CDCl$_3$, 298 K)
Figure S19. The mutual transformations of enol tautomers of compound 2.

Figure S20. The mutual transformations of enol tautomers of compound 3.

Figure S21. Experimental ECD spectra of 1–3.
Figure S22. 1H NMR (600 MHz) spectrum of compound 1 (Recorded in DMSO-d_6, 298 K)

Figure S23. 1H NMR (600 MHz) spectrum of compound 2 (Recorded in DMSO-d_6, 298 K)
Figure S24. 1H NMR (600 MHz) spectrum of compound 3 (Recorded in DMSO-d_6, 298 K)

![NMR Spectrum]

Table S1 PPAPs with enolizable β,β'-triC or β-diC systems

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1‒6</td>
<td>hyperascyrones A‒F1</td>
</tr>
<tr>
<td>7‒10</td>
<td>hyperbeanols A‒D2</td>
</tr>
<tr>
<td>11</td>
<td>chipericumin E3</td>
</tr>
<tr>
<td>12‒14</td>
<td>semsinones A‒C4</td>
</tr>
<tr>
<td>15‒20</td>
<td>oblongifolin L, N‒Q, T‒U5</td>
</tr>
<tr>
<td>21‒24</td>
<td>oblongifolin AA, Z, V, L6</td>
</tr>
<tr>
<td>25‒28</td>
<td>oblongifolin A‒D7</td>
</tr>
<tr>
<td>29</td>
<td>Oblongifolin E8</td>
</tr>
<tr>
<td>30‒31</td>
<td>guttiferone I‒J9</td>
</tr>
<tr>
<td>32</td>
<td>garcicowin B10</td>
</tr>
<tr>
<td>33‒34</td>
<td>6-epi-guttiferone J</td>
</tr>
<tr>
<td>35‒36</td>
<td>guttiferone K‒L12</td>
</tr>
<tr>
<td>37‒38</td>
<td>guttiferone O‒P13</td>
</tr>
<tr>
<td>39</td>
<td>guttiferone G14</td>
</tr>
</tbody>
</table>
40–44 guttiferone A–E15
45–47 guttiferone M
48–51 7-epi-garcinol
52 guttiferone Q18
53 cowanone19
54 garcimultiflorone K20
55–59 Garcimultiflorone D–F
60–63 garciesculentone B–E22
64 xanthochymol23
65 laxifloranone24
66–67 guttiferone H
68–69 guttiferone M–N26
70 guttiferone F27
71 camboginol28
72 garcimultiflorone H29
73 trijapin D30
74 garcinielliptone HF31

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>nemorosone32</td>
</tr>
<tr>
<td>76</td>
<td>Hydroxynemorosone32</td>
</tr>
<tr>
<td>77</td>
<td>chamone I33</td>
</tr>
<tr>
<td>78</td>
<td>chamone II33</td>
</tr>
<tr>
<td>79</td>
<td>garcinialiptone D34</td>
</tr>
<tr>
<td>80–81</td>
<td>hyperevolutin A–B35</td>
</tr>
<tr>
<td>82</td>
<td>hyperibine J36</td>
</tr>
<tr>
<td>83</td>
<td>Hyperfirin36</td>
</tr>
<tr>
<td>84</td>
<td>Secohyperforin37</td>
</tr>
<tr>
<td>85</td>
<td>Adsecohyperforin37</td>
</tr>
<tr>
<td>86</td>
<td>garcinielliptone F38</td>
</tr>
</tbody>
</table>

The PPAPs with enolizable β–dicarbonyl (β–diC) systems

(15) Gustafson, K. R.; Blunt, J. W.; Munro, M. H.; Fuller, R. W.; McKee, T. C.; Cardellina II, J. H.; McMahon, J. B.; Cragg, G. M.; Boyd, M. R. The guttiferones, HIV-inhibitory benzophenones from Symphonia globulifera,

(33) Lokvam, J.; Braddock, J. F.; Reichardt, P. B.; Clausen, T. P. Two polyprenylated benzophenones from

\begin{table}[h]
\centering
\caption{Antibacterial activities of compounds 1–3 with MIC\textsubscript{50} Values ± SD (μM)}
\begin{tabular}{|c|c|c|c|}
\hline
 & \textit{Escherichia coli} & \textit{Pseudomonas aeruginosa} & \textit{Staphylococcus aureus} & \textit{Salmonella enterica} \\
 & ATCC25922 & ATCC27853 & subsp. Aureus & subsp. enterica \\
\hline
1 & & & & \\
\hline
2 & & & & \\
\hline
3 & & & & \\
\hline
Penicillina & & & & \\
\hline
\end{tabular}
\end{table}

aPenicillin was used as positive control.

bnot detected (practical limit of detection).
Figure S25. 1H NMR (400 MHz) spectrum of compound 1 (Recorded in C$_5$D$_5$N, 298 K).

Figure S26. 13C NMR (100 MHz) spectrum of compound 1 (Recorded in C$_5$D$_5$N, 298 K)
Figure S27. HSQC spectrum of compound 1 (Recorded in C\textsubscript{5}D\textsubscript{5}N, 298 K)

Figure S28. 1H–1H COSY spectrum of compound 1 (Recorded in C\textsubscript{5}D\textsubscript{5}N, 298 K)
Figure S29. HMBC spectrum of compound 1 (Recorded in C$_5$D$_5$N, 298 K)

Figure S30. NOESY spectrum of compound 1 (Recorded in C$_5$D$_5$N, 298 K)
Figure S31. HRESIMS of compound 1.
Figure S32. UV spectrum of compound 1

Figure S33. IR spectrum of compound 1
Figure S34. 1H NMR (400 MHz) spectrum of compound 2 (Recorded in C$_5$D$_5$N, 298 K)

Figure S35. 13C NMR (100 MHz) spectrum of compound 2 (Recorded in C$_5$D$_5$N, 298 K)
Figure S36. HSQC spectrum of compound 2 (Recorded in C₅D₅N, 298 K)

Figure S37. ¹H-¹H COSY spectrum of compound 2 (Recorded in C₅D₅N, 298 K)
Figure S38. HMBC spectrum of compound 2 (Recorded in C$_5$D$_5$N, 298 K)

Figure S39. NOESY spectrum of compound 2 (Recorded in C$_5$D$_5$N, 298 K)
Figure S40. HRESIMS of compound 2.
Figure S41. UV spectrum of compound 2

Figure S42. IR spectrum of compound 2
Figure S43. 1H NMR (400 MHz) spectrum of compound 3 (Recorded in C$_5$D$_5$N, 298 K)

![H NMR spectrum of compound 3](image)

Figure S44. 13C NMR (100 MHz) spectrum of compound 3 (Recorded in C$_5$D$_5$N, 298 K)

![C NMR spectrum of compound 3](image)
Figure S45. HSQC spectrum of compound 3 (Recorded in C$_5$D$_5$N, 298 K)

Figure S46. 1H–1H COSY spectrum of compound 3 (Recorded in C$_5$D$_5$N, 298 K)
Figure S47. HMBC spectrum of compound 3 (Recorded in C$_5$D$_5$N, 298 K)

Figure S48. NOESY spectrum of compound 3 (Recorded in C$_5$D$_5$N, 298 K)
Figure S49. HRESIMS of compound 3.
Figure S50. UV spectrum of compound 3

Figure S51. IR spectrum of compound 3
Figure S52. 1H NMR (800 MHz) spectrum of compound 4 (Recorded in CDCl$_3$, 298 K)

Figure S53. 13C NMR (200 MHz) spectrum of compound 4 (Recorded in CDCl$_3$, 298 K)
Figure S54. HSQC spectrum of compound 4 (Recorded in CDCl$_3$, 298 K)

Figure S55. HMBC spectrum of compound 4 (Recorded in CDCl$_3$, 298 K)
Figure S56. NOESY spectrum of compound 4 (Recorded in CDCl₃, 298 K)
Figures S57. HRESIMS of compound 4
Figure S58. 1H NMR (800 MHz) spectrum of compound 5 (Recorded in CDCl$_3$, 298 K)

![H NMR spectrum of compound 5](image)

Figure S59. 13C NMR (200 MHz) spectrum of compound 5 (Recorded in CDCl$_3$, 298 K)

![C NMR spectrum of compound 5](image)
Figure S60. HSQC spectrum of compound 5 (Recorded in CDCl$_3$, 298 K)

Figure S61. HMBC spectrum of compound 5 (Recorded in CDCl$_3$, 298 K)
Figure S62. NOESY spectrum of compound 5 (Recorded in CDCl₃, 298 K)
Figure S63. HRESIMS of compound 5
Figure S64. 1H NMR (800 MHz) spectrum of compound 6 (Recorded in CDCl$_3$, 298 K)

Figure S65. 13C NMR (200 MHz) spectrum of compound 6 (Recorded in CDCl$_3$, 298 K)
Figure S66. HSQC spectrum of compound 6 (Recorded in CDCl$_3$, 298 K)

Figure S67. HMBC spectrum of compound 6 (Recorded in CDCl$_3$, 298 K)
Figure S68. NOESY spectrum of compound 6 (Recorded in CDCl$_3$, 298 K)
Figure S69. HRESIMS of compound 6
Figure S70. 1H NMR (800 MHz) spectrum of compound 7 (Recorded in CDCl$_3$, 298 K)

Figure S71. 13C NMR (200 MHz) spectrum of compound 7 (Recorded in CDCl$_3$, 298 K)
Figure S72. HSQC spectrum of compound 7 (Recorded in CDCl₃, 298 K)

Figure S73. HMBC spectrum of compound 7 (Recorded in CDCl₃, 298 K)
Figure S74. NOESY spectrum of compound 7 (Recorded in CDCl₃, 298 K)
Figure S75. HRESIMS of compound 7
Figure S76. 1H NMR (800 MHz) spectrum of compound 8 (Recorded in CDCl$_3$, 298 K)

Figure S77. 13C NMR (200 MHz) spectrum of compound 8 (Recorded in CDCl$_3$, 298 K)
Figure S78. HSQC spectrum of compound 8 (Recorded in CDCl$_3$, 298 K)

Figure S79. 1H–1H COSY spectrum of compound 8 (Recorded in CDCl$_3$, 298 K)
Figure S80. HMBC spectrum of compound 8 (Recorded in CDCl₃, 298 K)

Figure S81. NOESY spectrum of compound 8 (Recorded in CDCl₃, 298 K)
Figure S82. HRESIMS of compound 8
Figure S83. 1H NMR (600 MHz) spectrum of compound 9 (Recorded in CDCl$_3$, 298 K)

Figure S84. 13C NMR (150 MHz) spectrum of compound 9 (Recorded in CDCl$_3$, 298 K)
Figure S85. HSQC spectrum of compound 9 (Recorded in CDCl₃, 298 K)

Figure S86. ¹H–¹H COSY spectrum of compound 9 (Recorded in CDCl₃, 298 K)
Figure S87. HMBC spectrum of compound 9 (Recorded in CDCl₃, 298 K)

Figure S88. NOESY spectrum of compound 9 (Recorded in CDCl₃, 298 K)
Figure S89. HRESIMS compound 9
Figure S90. 1H NMR (800 MHz) spectrum of compound 10 (Recorded in CDCl$_3$, 298 K).

Figure S91. 13C NMR (200 MHz) spectrum of compound 10 (Recorded in CDCl$_3$, 298 K).
Figure S92. HSQC spectrum of compound 10 (Recorded in CDCl$_3$, 298 K)

Figure S93. 1H$-^1$H COSY spectrum of compound 10 (Recorded in CDCl$_3$, 298 K)
Figure S94. HMBC spectrum of compound 10 (Recorded in CDCl₃, 298 K)

Figure S95. NOESY spectrum of compound 10 (Recorded in CDCl₃, 298 K)
Figure S96. HRESIMS of compound 10
Figure S97. 1H NMR (800 MHz) spectrum of compound 11 (Recorded in CDCl$_3$, 298 K)

Figure S98. 13C NMR (200 MHz) spectrum of compound 11 (Recorded in CDCl$_3$, 298 K)
Figure S99. HSQC spectrum of compound 11 (Recorded in CDCl₃, 298 K)

Figure S100. ¹H–¹H COSY spectrum of compound 11 (Recorded in CDCl₃, 298 K)
Figure S101. HMBC spectrum of compound 11 (Recorded in CDCl₃, 298 K)

Figure S102. NOESY spectrum of compound 11 (Recorded in CDCl₃, 298 K)
Figure S103. HRESIMS of compound 11
Figure S104. 1H NMR (600 MHz) spectrum of compound 12 (Recorded in CDCl$_3$, 298 K)

Figure S105. 13C NMR (150 MHz) spectrum of compound 12 (Recorded in CDCl$_3$, 298 K)
Figure S106. HSQC spectrum of compound 12 (Recorded in CDCl₃, 298 K)

Figure S107. ¹H–¹H COSY spectrum of compound 12 (Recorded in CDCl₃, 298 K)
Figure S108. HMBC spectrum of compound 12 (Recorded in CDCl$_3$, 298 K)

Figure S109. NOESY spectrum of compound 12 (Recorded in CDCl$_3$, 298 K)
Figure S110. HRESIMS of compound 12
Figure S111. 1H NMR (600 MHz) spectrum of compound 13 (Recorded in CDCl$_3$, 298 K)

Figure S112. 13C NMR (150 MHz) spectrum of compound 13 (Recorded in CDCl$_3$, 298 K)
Figure S113. HSQC spectrum of compound 13 (Recorded in CDCl₃, 298 K)

Figure S114. HMBC spectrum of compound 13 (Recorded in CDCl₃, 298 K)
Figure S115. NOESY spectrum of compound 13 (Recorded in CDCl$_3$, 298 K)
Figure S116. HRESIMS of compound 13
Figure S117. Experimental ECD spectra of 1, 4–7.

![Experimental ECD spectra of 1, 4–7](image1)

Figure S118. Experimental ECD spectra of 2, 8–11.

![Experimental ECD spectra of 2, 8–11](image2)

Figure S119. Experimental ECD spectra of 3, 12–13.

![Experimental ECD spectra of 3, 12–13](image3)