Synthesis of Rigidified Shikimic Acid Derivatives by Ring-Closing Metathesis to Imprint Inhibitor Efficacy against Shikimate Kinase Enzyme

Marina Pernas, a Beatriz Blanco, a Emilio Lence, a Paul Thompson, b Alastair R. Hawkins b and Concepción González-Bello a

a Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain. E-mail: concepcion.gonzalez.bello@usc.es

b Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK

Table of Contents

1. Preparation of alcohols 18, 20 and 21 S2
2. Preparation of carbonates 8 S3
3. Shikimate kinase assay S5
4. Figure S1 S6
5. Figure S2 S7
6. Figure S3 S8
7. Figure S4 S9
8. Figure S5 S10
9. Figure S6 S11
10. Figure S7 S12
11. Figure S8 S13
12. NMR spectra S14
13. Dixon plots S24
1. PREPARATION OF ALCOHOLS 18, 20 AND 21

Preparation of 2-(cyclopropylmethyl)prop-2-en-1-ol (18) from diethyl malonate (22)

(a) Diethyl 2-(cyclopropylmethyl)malonate. A solution of diethyl malonate (22) (0.29 mL, 1.71 mmol) in dry THF (3 mL), at 0 °C and under argon, was treated with NaH (75 mg, 1.87 mmol, ca 60% in mineral oil). The resultant mixture was stirred at room temperature for 30 min, and then cooled to 0 °C. Cyclopropylmethyl bromide (0.21 mL, 2.20 mmol) was then added and the reaction mixture was first stirred at room temperature for 1 h and then heated under reflux for 6 h. After cooling to room temperature, the solvent was removed under reduced pressure and the crude was dissolved in a mixture of diethyl ether and saturated NH₄Cl. The organic layer was separated and the aqueous layer was extracted with diethyl ether (∞2). The combined organic extracts were washed with brine, dried (anh. Na₂SO₄), filtered and concentrated under reduced pressure. The resulting residue was purified by flash chromatography, eluting with (5:95) ethyl acetate/hexane, to give diethyl 2-(cyclopropylmethyl)malonate (245 mg, 67%) as a colorless oil.

(b) 2-(Cyclopropylmethyl)malonic acid. A solution of diethyl 2-(cyclopropylmethyl)malonate (1.357 g, 6.34 mmol) in NaOH (8.5 mL, 16.92 mmol, 2 M) was heated under reflux for 2 h. After cooling to room temperature, the reaction mixture was washed with hexane (x2), acidified with HCl (1 M) until pH 1 and then extracted with ethyl acetate (8.5 mL, 16.92 mmol, 2 M) was heated under reflux for 2 h. After cooling to room temperature, the reaction mixture was first stirred at room temperature for 1 h and then heated under reflux for 6 h. After cooling to room temperature, the solvent was removed under reduced pressure and the crude was dissolved in a mixture of diethyl ether and saturated NH₄Cl. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (∞2). The combined organic extracts were washed with brine, dried (anh. MgSO₄), filtered and concentrated under reduced pressure to afford the corresponding 2-(cyclopropylmethyl)malonic acid (898 mg, 90%) as a white solid. ¹H NMR (300 MHz, DMSO) δ: 12.68 (br s, 2H, 2×CH₃), 3.26 (t, J = 7.5 Hz, 1H, CH), 1.61 (t, J = 7.2 Hz, 2H, CH₂), 0.74–0.61 (m, 1H, CH₂CH₂(CH₂)₂), 0.40–0.35 (m, 2H, cPr) and 0.08–0.04 (m, 2H, cPr) ppm.

(c) 2-(Cyclopropylmethyl)acrylic acid (23). A solution of 2-(cyclopropylmethyl)malonic acid (878 mg, 5.55 mmol), piperidine (0.66 mL, 6.66 mmol) and HCHO (2 mL, 27.75 mmol, ca 37% wt) in ethanol (22 mL) was heated at 80 °C for 12 h. After cooling to room temperature, the organic solvent was removed under reduced pressure. The residue was diluted with diethyl ether and saturated NaHCO₃. The aqueous phase was separated and the organic layer was extracted with saturated NaHCO₃. The combined aqueous phases were washed with diethyl ether and then acidified with HCl (conc.) until pH 1. The solution was extracted with diethyl ether. The combined organic extracts were washed with brine, dried (anh. Na₂SO₄), filtered and concentrated under reduced pressure to afford 2-(cyclopropylmethyl)acrylic acid (23) (663 mg, 95%) as a colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ: 9.96 (br s, 1H, OH), 6.30 (s, 1H, C=CH), 5.80 (m, 1H, C=CH₂), 2.18 (d, J = 6.8 Hz, 2H), 1.97 (d, J = 6.8 Hz, 2H), 1.68 (d, J = 6.8 Hz, 2H), 1.61 (t, J = 7.2 Hz, 2H, CH₂), 0.75 (m, 1H, CH₂CH₂(CH₂)₂), 0.52–0.46 (m, 2H, cPr) and 0.08 (m, 2H, cPr) ppm.

(e) 2-(Cyclopropylmethyl)prop-2-en-1-ol (18). A solution of 2-(cyclopropylmethyl)acrylic acid (23) (651 mg, 5.16 mmol) in dry THF (52 mL), at 0 °C and under argon, was treated with BH₃·Me₂S complex (3 mL, 6.20 mmol, 2 M). The reaction mixture was stirred at room temperature for 5 h and then diluted with ethyl acetate and water (1:1). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (∞3). The combined organic extracts were dried (anh. Na₂SO₄), filtered and concentrated under reduced pressure to afford 2-(cyclopropylmethyl)prop-2-en-1-ol (18) (350 mg, 60%) as a colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ: 5.02 (s, 2H, C=CH₂), 4.13 (s, 2H, CH₂OH), 1.97 (d, J = 6.8 Hz, 2H, CH₂CH₂(CH₂)₂), 0.86–0.76 (m, 1H, CH₂CH₂(CH₂)₂), 0.53–0.47 (m, 2H, cPr) and 0.09 (m, 2H, cPr) ppm.

2-((Ethoxymethyl)prop-2-en-1-ol (20). A solution of 2-methylene-1,3-propanediol (19) (50 mg, 0.57 mmol) in dry DMF (1.1 mL), at 0 °C and under argon, was treated with NaH (34 mg, 0.86 mmol, ca 60% w/w in mineral oil). After 30 min stirring, ethyl bromide (0.1 mL, 1.14 mmol) was added, the ice bath was removed and the reaction mixture was stirred for 1.5 h at room temperature. Ethyl acetate and water (4:1) were added, the aqueous phase was extracted with ethyl acetate (∞3). The combined organic extracts were dried (anh. Na₂SO₄), filtered and concentrated under reduced pressure. The resulting residue was purified by flash chromatography, eluting with (60:40) ethyl acetate/hexane, to give compound 20 (29 mg, 44%) as a colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ: 5.15 (s, 1H, CH₃), 5.10 (s, 1H, CHH), 4.15 (s, 2H, OCH₂), 4.03 (s, 2H, OCH₂), 3.48 (q, J = 7.0 Hz, 2H, OCH₂CH₂), 2.17 (s, 1H, OH) and 1.20 (t, J = 7.0 Hz, 3H, CH₃) ppm. IR (film): 3399 (OH) cm⁻¹. MS (ESI) m/z = 117 (MH⁺). HRMS calcd for C₆H₁₂O₂ (MH⁺): 117.0910; found, 117.0909.

S2
2-(Benzyloxymethyl)prop-2-en-1-ol (21). A solution of 2-methylene-1,3-propanodiol (19) (50 mg, 0.57 mmol) in dry THF (1.9 mL), at 0 °C and under argon, was treated with NaH (34.2 mg, 0.86 mmol, ca 60% w/w in mineral oil). After 30 min stirring, benzyl bromide (0.1 mL, 0.9 mmol) was added, the ice bath was removed and the reaction mixture was stirred for 3 h at room temperature. Saturated aqueous solution of NH₄Cl was added, the organic solvent was removed under reduced pressure and the aqueous extract was extracted with ethyl acetate (×3). The combined organic extracts were dried (anh. Na₂SO₄), filtered and concentrated under reduced pressure. The resulting residue was purified by flash chromatography, eluting with (60:40) ethyl acetate/hexane, to give compound 21 (28 mg, 28%) as a colorless oil.¹ H NMR (300 MHz, CDCl₃) δ: 7.39–7.26 (m, 5H, 5×CH), 5.21 (s, 1H, C=CH₂), 5.16 (s, 1H, C=CHH), 4.52 (s, 2H, OCH₂Ph), 4.17 (s, 2H, CH₂OH), 4.09 (s, 2H, CH₂OBn) and 2.55 (br s, 1H, OH) ppm.¹³C NMR (75 MHz, CDCl₃) δ: 154.1 (C), 138.0 (C), 128.5 (2×CH), 127.8 (3×CH), 113.4 (CH₂), 72.3 (CH₂), 71.6 (CH₂) and 64.2 (CH₂) ppm. IR (film): 3372 (OH) cm⁻¹. MS (ESI) m/z = 201 (M⁻Na⁻). HRMS calcld for C₉H₁₄O₃Na (M⁻Na⁻): 201.0886; found, 201.0888.

2. PREPARATION OF CARBONATES

Methyl 2-methylallyl carbonate (8a) and methyl (2-methylenebutyl) carbonate (8b) were prepared as reported previously described by Dai et al.¹ from commercially available 2-methylprop-2-en-1-ol (14) and 2-methylenebutan-1-ol (15), which was prepared from commercially available ketone 11 as reported Sawayama et al.¹

General procedure for synthesis of carbonates 8a-h. A solution of the alcohols 14–21 (1 mmol) and dry pyridine (3 mmol) in dry dichloromethane (0.4 mL/mmol of alcohol), at 0 °C and under argon, was treated with methyl chlorofomate (2 mmol) and the resultant solution was stirred at room temperature for 2–2.5 h. The reaction mixture was washed with brine and the organic layer was extracted with diethyl ether (×3). The combined organic extracts, were washed with HCl (1 M), dried (anh. MgSO₄), filtered and concentrated under reduced pressure. The reaction crude was purified by flash chromatography to give the carbonates 8a-h.

Methyl (2-methylenebutyl) carbonate (8c). It was prepared following the general procedure using 2-methylenebutan-1-ol (16)² (627 mg, 6.27 mmol), pyridine (1.5 mL), methyl chlorofomate (1.0 mL, 12.54 mmol), dichloromethane (16 mL). Reaction time = 2.5 h. Eluent for chromatography = (75:25) diethyl ether/hexanes. Yield = 78% (919 mg). Colorless oil.

¹H NMR (300 MHz, CDCl₃) δ: 5.03 (br s, 1H, CH₂C(CH₃)₂), 3.16 (s, 3H, OCH₃), 1.92 (t, J = 7.3 Hz, 2H, CH₂CCH₂CH₃), 1.46 (sext, J = 7.4 Hz, 2H, CH₂CCH₂CH₃) and 0.89 (t, J = 7.3 Hz, 3H, CH₃CH₂CH₃) ppm.¹³C NMR (75 MHz, CDCl₃) δ: 155.7 (C), 145.1 (C), 138.0 (C), 128.5 (2×CH), 127.8 (3×CH), 113.4 (CH₂), 72.3 (CH₂), 71.6 (CH₂) and 64.2 (CH₂) ppm. IR (film): 3372 (OH) cm⁻¹. MS (APCI) m/z = 159 (MH⁻). HRMS calcld for C₁₅H₂₄O₃ (MH⁻): 159.1016; found, 159.1014.

Methyl 2-(methylenehexyl) carbonate (8d). It was prepared following the general procedure using 2-methylenehexyl-1-ol (17)² (3.16 g, 31.59 mmol), pyridine (5 mL), methyl chlorofomate (7 mL, 94.77 mmol), dichloromethane (63 mL). Reaction time = 2.5 h. Yield = 94% (5.12 g). Colorless liquid.

¹H NMR (300 MHz, CDCl₃) δ: 4.89 (br s, 1H, C=CHH), 4.78 (br s, 1H, C=CHH), 4.41 (s, 2H, OCH₃), 3.61 (s, 3H, OCH₃), 1.92 (t, J = 7.3 Hz, 2H, CH₂C(CH₃)₂CH₃), 1.30 (m, 2H, CH₂CCH₂CH₂CH₃), 1.17 (m, 2H, CH₂CCH₂CH₂CH₃) and 0.76 (t, J = 7.2 Hz, 3H, CH₃CH₂CH₂CH₃) ppm.¹³C NMR (75 MHz, CDCl₃) δ: 155.3 (C), 143.4 (C), 112.8 (CH₃), 70.3 (CH₃), 54.8 (OCH₃), 35.1 (CH₃), 20.7 (CH₃) and 13.8 (CH₃) ppm. FTIR (film): 1750 (CO) cm⁻¹. MS (APCI) m/z = 273 (MH⁻). HRMS calcld for C₂₃H₃₈O₃ (MH⁻): 273.2706; found, 273.2700.

S3
2-(Cyclopropylmethyl)allyl methyl carbonate (8e). It was prepared following the general procedure using 2-(cyclopropylmethyl)prop-2-en-1-ol (18) (321 mg, 2.86 mmol), pyridine (0.7 mL), methyl chloroformate (0.4 mL), dichloromethane (7.2 mL). Reaction time = 2.5 h. Eluent for chromatography = (10:90) ethyl acetate/hexane. Yield = 72% (350 mg). Colorless liquid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 5.08 (br s, 1H, C=CHH), 5.04 (br s, 1H, C=CHH), 4.61 (br s, 2H, OCH\(_2\)), 3.76 (s, 3H, OCH\(_3\)), 1.95 (d, \(J = 6.9\) Hz, 2H, \(\text{CH}_2\text{CH}(\text{CH}_3)\)), 0.80–0.73 (m, 1H, \(\text{CH}_2\text{CH}(\text{CH}_3)\)), 0.50–0.44 (m, 2H, \(\text{CH}_2\text{CH}(\text{CH}_3)\)) and 0.06 (m, 2H, \(\text{CH}_2\text{CH}(\text{CH}_3)\)) ppm. \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 155.8 (C), 143.6 (C), 112.9 (CH\(_2\)), 70.5 (CH\(_2\)), 54.8 (OCH\(_3\)), 38.1 (CH\(_2\)), 9.1 (CH) and 4.7 (2\(\times\)CH\(_3\)) ppm. IR (film): 1744 (CO) cm\(^{-1}\). MS (ESI) \(m/z = 171\) (MH\(^+\)). HRMS calcd for \(\text{C}_9\text{H}_{15}\text{O}_3\) (MH\(^+\)): 171.1016; found, 171.1020.

2-(Ethoxymethyl)allyl methyl carbonate (8f). It was prepared following the general procedure using 2-(ethoxymethyl)prop-2-en-1-ol (19) (251 mg, 1.16 mmol), pyridine (0.3 mL), methyl chloroformate (0.18 mL, 2.27 mmol), solution of methyl chloroformate in dry dichloromethane (2.4 mL, 1.0 M), dichloromethane (2.1 mL). Reaction time = 2 h. Eluent for chromatography = (30:70) ethyl acetate/hexane. Yield = 78% (240 mg). Colorless liquid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 5.16 (s, 2H, C=CH\(_2\)), 4.58 (s, 2H, OCH\(_2\)), 3.91 (s, 2H, CH\(_3\)), 3.70 (s, 3H, OCH\(_3\)), 3.40 (q, \(J = 7.0\) Hz, 2H, OCH\(_2\)CH\(_3\)) and 1.12 (d, \(J = 7.0\) Hz, 3H, CH\(_3\)) ppm. \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 155.5 (C), 140.5 (C), 115.2 (CH\(_2\)), 71.0 (CH\(_2\)), 68.0 (CH\(_2\)), 65.7 (CH\(_3\)), 54.7 (OCH\(_3\)) and 15.0 (CH\(_3\)) ppm. IR (film): 1751 (CO) cm\(^{-1}\). MS (ESI) \(m/z = 175\) (MH\(^+\)). HRMS calcd for \(\text{C}_9\text{H}_{15}\text{O}_4\) (MH\(^+\)): 175.0965; found, 175.0964.

2-(Benzylxoymethyl)allyl methyl carbonate (8g). It was prepared following the general procedure using 2-(benzyloxymethyl)prop-2-en-1-ol (20) (207 mg, 1.16 mmol), pyridine (0.3 mL), methyl chloroformate (0.2 mL), dichloromethane (2.9 mL). Reaction time = 2.5 h. Eluent for chromatography = (20:80) ethyl acetate/hexane. Yield = 94% (257 mg). Colorless liquid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 7.34–7.26 (m, 5H, 5\(\times\)ArH), 5.30 (s, 2H, C=CH\(_2\)), 4.71 (s, 2H, OCH\(_2\)), 4.51 (s, 2H, OCH\(_2\)Ph), 4.07 (s, 2H, OCH\(_2\)OBn) and 3.78 (s, 3H, CH\(_3\)) ppm. \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 155.6 (C), 140.2 (C), 138.0 (C), 128.4 (2\(\times\)CH), 127.7 (2\(\times\)CH), 127.7 (CH), 115.9 (CH\(_2\)), 72.2 (CH\(_2\)), 70.6 (CH\(_2\)), 68.1 (CH\(_3\)) and 54.8 (CH\(_3\)) ppm. IR (film): 1744 (CO) cm\(^{-1}\). MS (ESI) \(m/z = 259\) (MNa\(^+\)). HRMS calcd for \(\text{C}_{13}\text{H}_{19}\text{O}_4\text{Na}\) (MNa\(^+\)): 259.0941; found, 259.0941.

2-(Hydroxymethyl)allyl methyl carbonate (8h). It was prepared following the general procedure using 2-methylene-1,3-propanediol (19) (205 mg, 2.33 mmol), pyridine (0.4 mL), methyl chloroformate (0.2 mL), dichloromethane (2.3 mL). Reaction time = 2.5 h. Eluent for chromatography = 40:60 ethyl acetate/hexane. Yield = 55% (188 mg). Colorless liquid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 5.19 (m, 1H, C=CHH), 5.14 (s, 1H, C=CHH), 4.61 (s, 2H, OCH\(_2\)), 4.08 (s, 1H, CH\(_2\)OH), 4.07 (s, 1H, CH\(_2\)OH) and 3.72 (s, 3H, OCH\(_3\)) ppm. \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 155.7 (C), 142.8 (C), 114.4 (CH\(_2\)), 68.1 (CH\(_2\)), 63.2 (CH\(_2\)) and 54.9 (OCH\(_3\)) ppm. IR (film) u: 3390 (OH) and 1747 (CO) cm\(^{-1}\).

2-((tert-Butyldimethylsilyloxy)methyl)allyl methyl carbonate (8i). A solution of 2-(hydroxymethyl)allyl methyl carbonate (8h) (180 mg, 1.23 mmol), DMAP (42 mg, 0.35 mmol), TBAI (46 mg, 0.12 mmol) and dry triethylamine (0.2 mL, 1.35 mmol) in dry DMF (2.0 mL), at 0 °C and under argon, was treated with tert-butyldimethylsilyl chloride (204 mg, 1.35 mmol). The reaction mixture was stirred at 0 °C for 1 h and at room temperature for 3 h. The resultant suspension was diluted with
ethyl acetate and filtered over a plug of Celite®. The filtrate and the washings were washed with HCl (1 M, ×3) followed by brine (×3). The organic extract was dried (anh. Na₂SO₄), filtered and concentrated under reduced pressure. The resulting residue was purified by flash chromatography, eluting with (7:93) ethyl acetate/hexane, to give the silyl ether 22 (297 mg, 93%) as a colorless oil.

1H NMR (300 MHz, CDCl₃) δ: 5.21 (m, 1H, C=CHH), 5.12 (m, 1H, C=CHH), 4.61 (s, 2H, OCH₂), 4.14 (br s, 2H, CH₂OTBS), 3.74 (s, 3H, OCH₃), 0.87 (s, 9H, C(CH₃)₃) and 0.03 (s, 6H, 2×CH₃) ppm. 13C NMR (75 MHz, CDCl₃) δ: 155.7 (C), 142.8 (C), 113.5 (CH₂), 68.1 (CH₂), 63.7 (CH₂), 54.8 (OCH₃), 25.9 (C(CH₃)₃), 18.4 (C(CH₃)₃) and 5.4 (2×CH₃) ppm. IR (film): 1751 (CO) cm⁻¹. MS (ESI) m/z = 283 (MNa⁺). HRMS calcld for C₁₂H₂₄O₄SiNa (MNa⁺): 283.1336; found, 283.1336.

3. SHIKIMATE KINASE ASSAY
Both enzymes were purified as described previously.³,¹⁸ Concentrated solutions of Hp-SK (7.4 mg mL⁻¹) or Mt-SK (1.5 mg mL⁻¹) were stored in potassium phosphate buffer (50 mM, pH 7.2), DTT (1 mM) and NaCl (150 mM). When required for assays, aliquots of the enzyme stock solutions were diluted in water and buffer and stored on ice. Enzyme activity was measured by monitoring the decrease in absorbance at 340 nm in the UV spectrum due to the absorbance of NADH (ε/M cm⁻¹ 6220) in a coupled assay format wherein ADP formed after the formation of shikimate-3-phosphate was detected using pyruvate kinase (PK) and lactate dehydrogenase (LDH). Oxidation of NADH to NAD during PK-LDH activity was monitored at 340 nm. Standard assay conditions for shikimate kinase were 100 mM Tris·HCl pH 7.7, 100 mM KCl, 5 mM MgCl₂, 2.5 mM ATP, 1 mM shikimic acid, 1 mM PEP, 0.20 mM NADH, ~2.8 units of PK-LDH and 0.03 unit of SK protein. One unit of enzyme is defined as the amount of enzyme required to convert 1 µmol of substrate to product in 1 min. Each assay was initiated by addition of shikimic acid. Solutions of ATP (ε/M cm⁻¹ 15 400) and NADH (ε/M cm⁻¹ 6220) were calibrated by measuring the absorbance at 259 nm and 340 nm in the UV spectrum, respectively. Solutions of shikimic acid were calibrated by equilibration with SK and measurement of the change in the UV absorbance at 340 nm due to the disappearance of NADH. The Kᵢ values of compounds 2–5 against SK were obtained from Dixon plots (1/v vs [I]) of assay data. The initial rates at fixed enzyme and substrate concentrations (0.25–1.2 Kₘ) were measured in the absence and in the presence of various inhibitor concentrations.

Figure S1. Conformation of minimum energy of 6 (R = H) obtained by computational calculations (Gaussian 09, AM1).
Figure S2. The rmsd plots for the protein backbone (Cα, C, N and O atoms) (orange line) and ligand (blue line) calculated for the Hp-SK/ATP/Mg^{2+}/ligand complex obtained from MD simulation studies. A. Hp-SK/ATP/Mg^{2+}/4a complex. B. Hp-SK/ATP/Mg^{2+}/4b complex. C. Hp-SK/ATP/Mg^{2+}/4c complex. D. Hp-SK/ATP/Mg^{2+}/4d complex. E. Hp-SK/ATP/Mg^{2+}/4f complex.
Figure S3. The rmsd plots for the protein backbone (Ca, C, N and O atoms) (orange line) and ligand (blue line) calculated for the Mt-SK/ATP/Mg²⁺/ligand complex obtained from MD simulation studies. A. Mt-SK/ATP/Mg²⁺/4a complex. B. Mt-SK/ATP/Mg²⁺/4b complex. C. Mt-SK/ATP/Mg²⁺/4c complex. D. Mt-SK/ATP/Mg²⁺/4d complex. E. Mt-SK/ATP/Mg²⁺/4f complex.
Figure S4. Detailed view of the binding mode of the most potent compounds against Hp-SK (A, compound 4f) and Mt-SK (B, compound 4a) in Hp-SK/ATP/Mg^{2+}/4f and Mt-SK/ATP/Mg^{2+}/4a enzyme complexes, respectively. Two perspectives are provided. Snapshots after 80 ns of simulation are shown. Relevant side chain residues are shown and labelled. Polar contacts are shown as blue dashed lines. The indirect interaction of the oxygen atom of the substituent in the ether bridge in 4f with the Val44 side chain through a water network is highlighted with blue shading. The proximity of the methyl group in 4a to the carbon chain of the catalytic residue Arg117 is shown as yellow shading.
Figure S5. Variation of the dihedral angle shown in red in ligands 4b (A), 4c (B), 4d (C) and 4f (D) calculated for the Hp-SK/ATP/Mg^{2+}/ligand complex obtained from MD simulation studies.
Figure S6. Variation of the dihedral angle shown in red in ligands 4b (A), 4c (B), 4d (C) and 4f (D) calculated for the Mt-SK/ATP/Mg\(^{2+}\)/ligand complex obtained from MD simulation studies.
Figure S7. Amino acid sequence alignments for *M. tuberculosis*, *H. pylori*, *E. coli*, *S. aureus* and *S. typhi* shikimate kinase. For the *H. pylori* enzyme, two strains are shown: AROK_HELPJ, Q9ZMS3 (strain J99 / ATCC 700824) and clinically isolated strain from Guadalajara Hospital (Spain), which was employed in these studies. Protein sequences were aligned using the CLUSTAL Omega multiple sequence alignment (http://www.ebi.ac.uk/Tools/msa/clustalo/). Changed residues in the clinically isolated strain used in these studies are highlighted in red. Conserved residues are highlighted in yellow. The P loop, SB and LID domains are also indicated.
Figure S8. Superposition of several snapshots of Hp-SK/ATP/Mg12/SS (A) and Mt-SK/ATP/Mg12/SS (B) complexes. Note how the methyl group would interact with the side chain of apolar residues of the lid and P-loop (Leu118 and Met10 for Hp-SK and Leu119, Leu120 and Pro11 for Mt-SK). No interaction with the carbon chain of the essential arginine was identified.
Figure S9. Dixon plots of compounds 2–5 against Hp-SK.
Figure S10. Dixon plots of compounds 4–5 against Mt-SK.