Metal-, Photocatalyst-, and Light-Free Late-Stage C–H Alkylation of N-Heteroarenes with Organotrimethylsilanes using Persulfate as a Stoichiometric Oxidant

Jianyang Dong, Xiaochen Wang, Zhen Wang, Hongjian Song, Yuxiu Liu and Qingmin Wang*

*a State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

Supporting Information

Table of Contents………………………………………………………………………………S1
General Information……………………………………………………………………………S2
Synthesis of alkyl-trimethylsilanes…………………………………………………………S3
Investigation of the Key Reaction Parameters…………………………………………S3–S5
Investigation of the mechanism……………………………………………………………S5–S6
Experimental Procedures and Product Characterization……………………………S6–S23
Gram-scale Reaction………………………………………………………………………S23
References………………………………………………………………………………….S24
Copies of 1H NMR and 13C NMR spectra for new compounds………………….S25–S73
1. General Information

Reagents were purchased from commercial sources and were used as received. 1H and 13C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 Ultrashield NMR spectrometers. Chemical shifts (δ) were given in parts per million (ppm) and were measured downfield from internal tetramethylsilane. High-resolution mass spectrometry (HRMS) data were obtained on an FTICR-MS instrument (Ionspec 7.0 T). The melting points were determined on an X-4 microscope melting point apparatus and are uncorrected. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100-200 mesh).
Many alkyl-trimethyl-silanes (except for commercially available benzyltrimethylsilane 2) were synthesized using procedures reported in the literature. Scheme S1 depicts the silanes that have been prepared and the corresponding literature references.

Scheme S1. The alkyl-trimethyl-silanes synthesized according to procedure reported in the literature.

3. Investigation of the key reaction parameters.
Table S1: Screening of different solvents

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH<sub>3</sub>CN</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>CH<sub>3</sub>CN:H<sub>2</sub>O=1:1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DMSO</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>3</td>
<td>DMSO</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>HCl</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>H$_2$O</td>
<td>NR</td>
</tr>
</tbody>
</table>

*General conditions: 1 (0.3 mmol), 2 (0.6 mmol), K$_2$S$_2$O$_8$ (0.6 mmol) and solvent (1.5 mL) under Ar atmosphere. *NMR yield determined with 1,1,2,2-tetrachloroethane (0.3 mmol) as an internal standard; NR, no reaction.

Table S2: Screening of oxidants.

<table>
<thead>
<tr>
<th>entry</th>
<th>oxidant</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K$_2$S$_2$O$_8$</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>Na$_2$S$_2$O$_8$</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>(NH$_4$)$_2$S$_2$O$_8$</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>t-BPA</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>t-BHP</td>
<td>5</td>
</tr>
</tbody>
</table>

*General conditions: 1 (0.3 mmol), 2 (0.6 mmol), oxidant (0.6 mmol) and DMSO (1.5 mL) under Ar atmosphere. *NMR yield determined with 1,1,2,2-tetrachloroethane (0.3 mmol) as an internal standard.

Table S3: Screening of different temperature.

<table>
<thead>
<tr>
<th>entry</th>
<th>temperature/oC</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>86</td>
</tr>
</tbody>
</table>

*General conditions: 1 (0.3 mmol), 2 (0.6 mmol), (NH$_4$)$_2$S$_2$O$_8$ (0.6 mmol) and DMSO (1.5 mL) under Ar atmosphere. *NMR yield determined with 1,1,2,2-tetrachloroethane (0.3 mmol) as an internal standard;

Table S4: Screening of the amount of benzyltrimethylsilane and oxidant.

<table>
<thead>
<tr>
<th>entry</th>
<th>y equiv</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>2 x</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>85</td>
</tr>
</tbody>
</table>

*General conditions: 1 (0.3 mmol), 2 (0.6 mmol), (NH$_4$)$_2$S$_2$O$_8$ (0.6 mmol) and DMSO (1.5 mL) under Ar atmosphere. *NMR yield determined with 1,1,2,2-tetrachloroethane (0.3 mmol) as an internal standard;
<table>
<thead>
<tr>
<th>Entry</th>
<th>x eq. 2</th>
<th>y eq. ((\text{NH}_4)_2\text{S}_2\text{O}_8)</th>
<th>Yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>2.0</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>2.0</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>1.5</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>3.0</td>
<td>93 (91%)(^c)</td>
</tr>
</tbody>
</table>

\(^a\)General conditions: 1 (0.3 mmol), 2 (0.3x mmol), \((\text{NH}_4)_2\text{S}_2\text{O}_8\) (0.3y mmol) and DMSO (1.5 mL) under Ar atmosphere. \(^b\)NMR yield determined with 1,1,2,2-tetrachloroethane (0.3 mmol) as an internal standard; \(^c\)Isolated yield.

Table S5 Control experiments

![Scheme S2](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>control conditions</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>w/o ((\text{NH}_4)_2\text{S}_2\text{O}_8)</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>w/o TFA</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>standard conditions, w/all</td>
<td>93</td>
</tr>
</tbody>
</table>

The yield was determined by \(^1\)H NMR spectroscopy using dibromomethane as the internal standard.

4. Investigation of the mechanism.

4.1 TEMPO was used as radical scavengers.

![Scheme S2](image)

4.2 1,1-diphenylethylene was used as radical scavengers.
To a 8 mL glass vial was added 1 (40 μL, 0.3 mmol, 1.0 equiv), 2 (114 μL, 0.6 mmol, 2.0 equiv), \((\text{NH}_4)_2\text{S}_2\text{O}_8\) (205 mg, 0.9 mmol, 2.0 equiv), 1,1-diphenylethylene (117 mg, 0.75 mmol, 2.5 equiv), TFA (45 μL, 0.6 mmol, 2.0 equiv) and 1.5 mL of DMSO. The reaction mixture was degassed by bubbling with argon for 30 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly at 30 °C for 24 h. The product 3 was obtained in less than 5% yield; and instead a 6% yield of compound 51, was isolated from the reaction.

4.3 Detection of by-product 53

To a 8 mL glass vial was added 1 (40 μL, 0.3 mmol, 1.0 equiv), 46 (128.4 mg, 0.6 mmol, 2.0 equiv), \((\text{NH}_4)_2\text{S}_2\text{O}_8\) (205 mg, 0.9 mmol, 2.0 equiv), TFA (45 μL, 0.6 mmol, 2.0 equiv) and 1.5 mL of DMSO. The reaction mixture was degassed by bubbling with argon for 30 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly at 30 °C for 24 h. The byproduct of radical coupling 53 was isolated from the reaction in 15% yield.

5. Experimental procedures and product characterization

5.1 General procedure A for the alkylation of N-heteroarenes.

To a 8 mL glass vial was added heteroarene (0.3 mmol, 1.0 equiv), alkyl-trimethyl-silanes (0.6 mmol, 2.0 equiv), \((\text{NH}_4)_2\text{S}_2\text{O}_8\) (205 mg, 0.9 mmol, 2.0 equiv), TFA (45 μL, 0.6 mmol, 2.0 equiv) and 1.5 mL of DMSO. The reaction mixture was degassed by bubbling with argon for 30 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly at 30 °C for 24 h. The mixture was diluted with 20 mL of aqueous 1 M NaHCO₃ solution, and extracted with DCM (3 × 20 mL). The combined organic extracts were washed with brine (40 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

5.2 General procedure B for the alkylation of N-heteroarenes.

To a 8 mL glass vial was added heteroarene (0.3 mmol, 1.0 equiv), alkyl-trimethyl-silanes (0.6 mmol, 2.0 equiv), \((\text{NH}_4)_2\text{S}_2\text{O}_8\) (205 mg, 0.9 mmol, 2.0 equiv), TFA (45 μL, 0.6 mmol, 2.0 equiv) and 1.5 mL of DMSO. The reaction mixture was degassed by bubbling with argon for 30 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly at 60 °C for 24 h. The mixture was diluted with 20 mL of aqueous 1 M NaHCO₃ solution, and extracted with DCM (3 × 20 mL). The combined organic extracts were washed with brine (40 mL), dried
over Na$_2$SO$_4$, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

5.3. Product characterization

2-benzyl-4-methylquinoline (3).

According to the general procedure A. The spectral data is consistent with the literature data.6 Brown solid (63.9 mg, 91%). M.p. = 64 – 65 °C.

1H NMR (400 MHz, CDCl$_3$) δ 8.09 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.38 – 7.27 (m, 4H), 7.25 – 7.18 (m, 1H), 7.06 (s, 1H), 4.29 (s, 2H), 2.60 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 161.0, 147.8, 144.7, 139.5, 129.7, 129.4, 129.3, 128.7, 127.0, 126.6, 125.9, 123.8, 122.3, 45.7, 18.8.

HRMS (ESI) calcd for C$_{17}$H$_{16}$N [M + H]$^+$ 234.1277, found 234.1279.

2-benzyl-4-chloroquinoline (4).

According to the general procedure A. Yellow oil (30.4 mg, 40%). R$_f$ 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.17 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.38 – 7.28 (m, 5H), 7.26 (s, 1H), 4.31 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 161.3, 148.8, 143.0, 138.6, 130.6, 129.5, 129.4, 128.9, 129.1, 128.9, 127.1, 126.9, 125.2, 124.1, 121.6, 45.5.

HRMS (ESI) calcd for C$_{16}$H$_{13}$ClN [M + H]$^+$ 254.0731, found 254.0731.

2-benzyl-4-methoxyquinoline (5).

According to the general procedure A. Yellow solid (35.9 mg, 48%). M.p. = 71 – 72 °C. R$_f$ 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.13 (dd, J = 8.4, 0.8 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.68 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.50 – 7.41 (m, 1H), 7.35 – 7.27 (m, 4H), 7.25 – 7.19 (m, 1H), 6.54 (s, 1H), 4.29 (s, 2H), 3.91 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 162.7, 162.5, 148.8, 139.5, 129.9, 129.3, 128.7, 128.6, 126.6, 125.2, 121.8, 120.3, 100.2, 55.6, 46.2.
HRMS (ESI) calcd for C_{17}H_{16}NO [M + H]^+ 250.1226, found 250.1231.

2-benzyl-4-chloro-6-fluoroquinoline (6).

According to the general procedure A.
Yellow solid (34.1 mg, 42%). M.p. = 72 – 73 °C.
R_l 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.09 (dd, $J = 9.1, 5.2$ Hz, 1H), 7.78 (d, $J = 9.2$ Hz, 1H), 7.51 (t, $J = 8.4$ Hz, 1H), 7.37 – 7.28 (m, 5H), 7.28 – 7.22 (m, 1H), 4.29 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 161.0 (d, $J = 247.2$ Hz), 160.7 (d, $J = 2.9$ Hz), 145.8, 142.2 (d, $J = 5.5$ Hz), 138.5, 132.1 (d, $J = 9.0$ Hz), 129.3, 128.9, 126.1 (d, $J = 10.3$ Hz), 126.0, 122.2, 120.7 (d, $J = 25.8$ Hz), 107.9 (d, $J = 24.3$ Hz), 45.3.
HRMS (ESI) calcd for C$_{16}$H$_{12}$ClFN [M + H]$^+$ 272.0637, found 272.0637.

4-benzyl-2-methylquinoline (7).

According to the general procedure A.
Yellow oil (60.1 mg, 86%).
R_l 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.04 (d, $J = 8.4$ Hz, 1H), 7.93 (d, $J = 8.4$ Hz, 1H), 7.62 (t, $J = 7.6$ Hz, 1H), 7.41 (t, $J = 7.6$ Hz, 1H), 7.28 (t, $J = 7.2$ Hz, 2H), 7.22 (d, $J = 6.8$ Hz, 1H), 7.17 (d, $J = 7.6$ Hz, 2H), 6.99 (s, 1H), 4.34 (s, 2H), 2.67 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 158.8, 148.1, 146.4, 138.7, 129.4, 129.2, 128.9, 128.7, 126.6, 125.9, 125.7, 123.7, 122.7, 38.1, 25.4.
HRMS (ESI) calcd for C$_{17}$H$_{16}$N [M + H]$^+$ 234.1277, found 234.1280.

4-benzyl-2-phenylquinoline (8).

According to the general procedure A.
Yellow oil (81.4 mg, 92%).
R_l 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.19 (d, $J = 8.4$ Hz, 1H), 8.12 – 8.05 (m, 2H), 7.98 – 7.90 (m, 1H), 7.64 (ddd, $J = 8.4, 6.8, 1.2$ Hz, 1H), 7.59 (s, 1H), 7.49 – 7.36 (m, 4H), 7.30 – 7.22 (m, 2H), 7.22 – 7.14 (m, 3H), 4.40 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 157.2, 148.7, 147.1, 139.8, 138.9, 130.6, 129.5, 129.4, 129.0, 128.9, 128.8, 127.6, 126.7, 126.4, 123.9, 119.9, 38.6.
HRMS (ESI) calcd for C_{22}H_{18}N [M + H]^+ 296.1434, found 296.1436.

1-benzylisoquinoline (9).

According to the general procedure A.
Yellow oil (57.3 mg, 96%).
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.49 (d, J = 5.6 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.30 – 7.19 (m, 4H), 7.13 (t, J = 7.2 Hz, 1H), 4.65 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 160.2, 142.1, 139.5, 136.6, 129.9, 128.6, 128.55, 127.4, 127.2, 126.3, 125.8, 119.8, 42.1.
HRMS (ESI) calcd for C_{16}H_{14}N [M + H]^+ 200.1121, found 200.1123.

1-benzyl-4-methoxyisoquinoline (10).

According to the general procedure A.
Yellow solid (61.3 mg, 82%). M.p. = 67 – 68 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.19 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.8 Hz, 2H), 7.63 – 7.54 (m, 1H), 7.52 – 7.43 (m, 1H), 7.28 – 7.18 (m, 4H), 7.16 – 7.09 (m, 1H), 4.57 (s, 2H), 4.00 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 152.5, 149.7, 139.9, 129.0, 128.9, 128.6, 128.5, 127.4, 127.2, 126.3, 125.5, 121.8, 121.7, 55.9, 41.7.
HRMS (ESI) calcd for C_{17}H_{26}NO [M + H]^+ 250.1226, found 250.1223.

1-benzyl-6-methylisoquinoline (11).

According to the general procedure A.
Gray oil (66.4 mg, 95%).
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.44 (d, J = 5.6 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.45 (d, J = 5.6 Hz, 1H), 7.33 (dd, J = 8.4, 1.6 Hz, 1H), 7.26 – 7.22 (m, 3H), 7.18 – 7.11 (m, 1H), 4.63 (s, 2H), 2.48 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.9, 142.2, 140.2, 139.7, 137.0, 129.5, 128.69, 128.6, 128.5, 127.4, 126.2, 125.5, 121.8, 121.7, 55.9, 41.7.
HRMS (ESI) calcd for C$_{17}$H$_{16}$N [M + H]$^+$ 234.1277, found 234.1281.

methyl 1-benzylisoquinoline-3-carboxylate (12).

According to the general procedure A.

Yellow solid (70.6 mg, 85%). M.p. = 110 – 111 °C.

1H NMR (400 MHz, CDCl$_3$) δ 8.49 (s, 1H), 8.13 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.70 – 7.60 (m, 1H), 7.60 – 7.53 (m, 1H), 7.30 – 7.17 (m, 4H), 7.13 (t, J = 7.0 Hz, 1H), 4.76 (s, 2H), 4.05 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 166.51, 160.69, 140.57, 139.04, 136.14, 130.52, 129.46, 128.77, 128.58, 128.49, 126.31, 126.13, 123.55, 52.83, 42.41.

HRMS (ESI) calcd for C$_{18}$H$_{16}$NO$_2$ [M + H]$^+$ 278.1176, found 278.1181.

methyl 1-benzylisoquinoline-4-carboxylate (13).

According to the general procedure A.

Yellow solid (56.5 mg, 68%). M.p. = 77 – 78 °C.

1H NMR (400 MHz, CDCl$_3$) δ 9.14 (s, 1H), 8.95 (d, J = 8.8 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 4.4 Hz, 4H), 7.17 (dd, J = 8.4, 4.4 Hz, 1H), 4.71 (s, 2H), 4.01 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 167.2, 165.2, 145.9, 138.8, 134.6, 131.6, 128.7, 128.7, 127.6, 126.9, 126.6, 126.3, 125.8, 119.7, 52.4, 42.6.

HRMS (ESI) calcd for C$_{18}$H$_{16}$NO$_2$ [M + H]$^+$ 278.1176, found 278.1181.

2-benzylquinoxaline (14).

According to the general procedure A.

Red oil (30.4 mg, 46%).

1H NMR (400 MHz, CDCl$_3$) δ 8.72 (s, 1H), 8.07 (ddd, J = 7.6, 6.0, 1.6 Hz, 2H), 7.81 – 7.67 (m, 2H), 7.36 – 7.29 (m, 4H), 7.27 – 7.21 (m, 1H), 4.38 (s, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 155.9, 146.1, 142.2, 141.3, 138.0, 130.2, 129.4, 129.3, 129.2, 129.2, 129.0, 127.0, 43.1.

HRMS (ESI) calcd for C$_{15}$H$_{13}$N$_2$ [M + H]$^+$ 221.1073, found 221.1076.

2-benzyl-4-phenylpyridine (15).
According to the general procedure B.

Yellow oil (33.1 mg, 45%).

\(R_f 0.30 \) (Petroleum ether/EtOAc, 5/1).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.59 (d, J = 4.8 \text{ Hz}, 1H), 7.57 (d, J = 7.2 \text{ Hz}, 2H), 7.44 (dd, J = 16.0, 8.4 \text{ Hz}, 3H), 7.35 – 7.27 (m, 6H), 7.23 – 7.15 (m, 1H), 4.22 (s, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 161.6, 149.9, 149.1, 139.6, 138.5, 129.2, 129.0, 128.8, 127.2, 126.6, 121.2, 119.5, 44.9.

HRMS (ESI) calcd for C\(_{18}\)H\(_{16}\)N \([\text{M} + \text{H}]^+\) 246.1277, found 246.1280.

4-benzyl-3,6-dichloropyridazine (16).

According to the general procedure B.

Yellow oil (30.7 mg, 43%).

\(R_f 0.30 \) (Petroleum ether/EtOAc, 5/1).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.47 – 7.31 (m, 3H), 7.19 (d, J = 7.2 \text{ Hz}, 2H), 7.08 (s, 1H), 4.06 (s, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 156.9, 156.3, 143.7, 134.6, 129.6, 129.5, 127.9, 38.4.

HRMS (ESI) calcd for C\(_{11}\)H\(_9\)Cl\(_2\)N\(_2\) \([\text{M} + \text{H}]^+\) 239.0137, found 239.0135.

9-benzylacridine (17).

According to the general procedure A.

Brown solid (50.8 mg, 63%). M.p. = 163 – 164 °C.

\(R_f 0.30 \) (Petroleum ether/EtOAc, 5/1).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.25 (d, J = 8.8 \text{ Hz}, 2H), 8.18 (d, J = 8.8 \text{ Hz}, 2H), 7.78 – 7.67 (m, 2H), 7.47 (dddd, J = 8.8, 6.4, 1.0 \text{ Hz}, 2H), 7.22 – 7.10 (m, 3H), 7.07 (d, J = 7.2 \text{ Hz}, 2H), 4.95 (s, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 148.9, 143.5, 139.4, 130.4, 129.9, 128.8, 128.2, 126.5, 126.1, 125.7, 124.8, 33.2.

HRMS (ESI) calcd for C\(_{20}\)H\(_{16}\)N \([\text{M} + \text{H}]^+\) 270.1277, found 270.1281.

6-benzylphenanthridine (18).
According to the *general procedure A*.
Yellow solid (76.7 mg, 95%). M.p. = 103 – 104 °C.
\(R_t \) 0.30 (Petroleum ether/EtOAc, 5/1).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.50 (d, \(J = 8.4 \) Hz, 1H), 8.45 (d, \(J = 7.6 \) Hz, 1H), 8.19 (dd, \(J = 8.0, 0.7 \) Hz, 1H), 8.12 (d, \(J = 8.4 \) Hz, 1H), 7.74 – 7.61 (m, 2H), 7.61 – 7.54 (m, 1H), 7.51 – 7.44 (m, 1H), 7.29 (d, \(J = 7.6 \) Hz, 2H), 7.20 (t, \(J = 7.6 \) Hz, 2H), 7.12 (t, \(J = 7.2 \) Hz, 1H), 4.72 (s, 2H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 160.1, 143.8, 139.2, 133.2, 130.3, 129.9, 128.7, 128.6, 127.3, 127.0, 126.7, 125.4, 123.9, 122.4, 122.0, 43.1.

HRMS (ESI) calcd for \(\text{C}_{20}\text{H}_{16}\text{N} \) \([M + H]^+\) 270.1277, found 270.1282.

2-benzyl-4,6-dimethylpyrimidine (19).

\[
\text{\begin{tikzpicture}[baseline={([yshift=-.5ex]current bounding box.center)}]
\node (A) at (0,0) {N};
\node (B) at (0.5,0) {N};
\node (C) at (0.5,-0.5) {Ph};
\draw (A) -- (B) -- (C);
\end{tikzpicture}}
\]

According to the *general procedure B*.
Yellow solid (30.9 mg, 52%). M.p. = 68 – 69 °C.
\(R_t \) 0.30 (Petroleum ether/EtOAc, 5/1).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.38 (d, \(J = 7.6 \) Hz, 2H), 7.27 (d, \(J = 6.8 \) Hz, 2H), 7.19 (t, \(J = 7.2 \) Hz, 1H), 6.85 (s, 1H), 4.21 (s, 2H), 2.44 (s, 6H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 169.1, 166.9, 138.8, 129.2, 128.4, 126.4, 117.7, 46.1, 24.2.

HRMS (ESI) calcd for \(\text{C}_{13}\text{H}_{15}\text{N}_2 \) \([M + H]^+\) 199.1230, found 199.1233.

2-benzylquinazolin-4(3\(H\))-one (20).

\[
\text{\begin{tikzpicture}[baseline={([yshift=-.5ex]current bounding box.center)}]
\node (A) at (0,0) {N};
\node (B) at (0.5,0) {N};
\node (C) at (0.5,-0.5) {NH};
\node (D) at (1,0) {O};
\node (E) at (1.25,0) {Ph};
\node (F) at (1,1.5) {O};
\node (G) at (0.25,1.5) {O};
\draw (A) -- (B) -- (C) -- (D) -- (E);
\draw (F) .. controls (0.25,1) .. (A);
\draw (G) .. controls (0.25,2) .. (A);
\end{tikzpicture}}
\]

According to the *general procedure B*.
White solid (38.9 mg, 55%). M.p. = 249 – 250 °C.
\(R_t \) 0.30 (Petroleum ether/EtOAc, 5/1).

\(^1\)H NMR (400 MHz, DMSO) \(\delta \) 12.43 (s, 1H), 8.08 (d, \(J = 8.0 \) Hz, 1H), 7.78 (t, \(J = 7.6 \) Hz, 1H), 7.61 (d, \(J = 8.0 \) Hz, 1H), 7.47 (t, \(J = 7.6 \) Hz, 1H), 7.39 (d, \(J = 7.2 \) Hz, 2H), 7.33 (t, \(J = 7.6 \) Hz, 2H), 7.24 (t, \(J = 7.2 \) Hz, 1H), 3.94 (s, 2H).

\(^13\)C NMR (100 MHz, DMSO) \(\delta \) 162.3, 156.4, 149.4, 137.04, 134.9, 129.4, 129.0, 127.4, 127.3, 126.7, 126.2, 121.2, 41.2.

HRMS (ESI) calcd for \(\text{C}_{15}\text{H}_{13}\text{N}_2\text{O} \) \([M + H]^+\) 237.1022, found 237.1022.

2-benzyl-6,7-dimethoxyquinazolin-4(3\(H\))-one (21).

\[
\text{\begin{tikzpicture}[baseline={([yshift=-.5ex]current bounding box.center)}]
\node (A) at (0,0) {N};
\node (B) at (0.5,0) {N};
\node (C) at (0.5,-0.5) {NH};
\node (D) at (1,0) {O};
\node (E) at (1.25,0) {Ph};
\node (F) at (1,1.5) {O};
\node (G) at (0.25,1.5) {O};
\draw (A) -- (B) -- (C) -- (D) -- (E);
\draw (F) .. controls (0.25,1) .. (A);
\draw (G) .. controls (0.25,2) .. (A);
\end{tikzpicture}}
\]

According to the *general procedure B*.
White solid (42.6 mg, 48%). M.p. = 66 – 67 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, DMSO) δ 12.34 (s, 1H), 7.48 – 7.36 (m, 5H), 7.30 (t, J = 7.2 Hz, 1H), 7.14 (s, 1H), 3.96 (s, 2H), 3.94 (s, 3H), 3.91 (s, 3H).

1H NMR (400 MHz, DMSO) δ 161.2, 154.5, 154.4, 148.2, 145.0, 136.8, 128.8, 128.4, 126.7, 113.5, 107.8, 104.8, 55.9, 55.6, 40.6.

HRMS (ESI) calcd for C_{17}H_{17}N_{2}O_{3} $[M + H]^+$ 297.1234, found 297.1236.

2-benzylbenzo[d]thiazole (22).

According to the general procedure B.

Yellow oil (54.7 mg, 81%).

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.49 – 7.41 (m, 1H), 7.40 – 7.32 (m, 5H), 7.32 – 7.28 (m, 1H), 4.44 (s, 2H).

1C NMR (100 MHz, CDCl$_3$) δ 171.3, 153.4, 137.3, 135.8, 129.3, 129.0, 127.5, 126.1, 124.9, 122.9, 121.7, 40.8.

HRMS (ESI) calcd for C_{14}H_{12}NS $[M + H]^+$ 226.0685, found 226.0685.

7-benzyl-3-bromo-6-chloroimidazo[1,2-b]pyridazine (23).

According to the general procedure B.

Yellow solid (39.5 mg, 41%). M.p. = 60 – 61 °C.

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 7.76 (s, 1H), 7.41 – 7.27 (m, 5H), 6.72 (s, 1H), 4.37 (s, 2H).

1C NMR (100 MHz, CDCl$_3$) δ 148.4, 142.5, 139.0, 136.2, 134.2, 129.6, 129.0, 127.5, 117.62, 101.7, 35.7.

HRMS (ESI) calcd for C_{13}H_{10}BrClN$_3$ $[M + H]^+$ 321.9741, found 321.9739.

7-benzyl-3-bromoimidazo[1,2-b]pyridazine (24).

According to the general procedure B.

Yellow solid (42.2 mg, 49%). M.p. = 70 – 71 °C.

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.33 (d, J = 4.4 Hz, 1H), 7.79 (s, 1H), 7.39 – 7.27 (m, 5H), 6.71 (d, J = 4.4 Hz, 1H), 4.41 (s, 2H).

1C NMR (100 MHz, CDCl$_3$) δ 144.1, 140.8, 140.4, 136.9, 133.6, 129.6, 129.0, 127.3, 115.6, 101.0, 35.6.

HRMS (ESI) calcd for C_{13}H_{11}BrN$_3$ $[M + H]^+$ 288.0131, found 288.0132.
2-(4-\((\text{tert}-\text{butyl})\)benzyl)-4-methylquinoline (25).

According to the general procedure A.
Yellow solid (72.8 mg, 84%). M.p. = 63 – 64 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
$^1\text{H NMR}$ (400 MHz, CDCl$_3$) δ 8.09 (d, $J = 8.4$ Hz, 1H), 7.88 (d, $J = 8.4$ Hz, 1H), 7.71 – 7.60 (m, 1H), 7.54 – 7.43 (m, 1H), 7.32 (dd, $J = 8.4$, 2.0 Hz, 2H), 7.28 – 7.19 (m, 2H), 7.06 (s, 1H), 4.25 (s, 2H), 2.56 (s, 3H), 1.28 (s, 9H).
$^{13}\text{C NMR}$ (100 MHz, CDCl$_3$) δ 161.1, 149.2, 147.7, 144.5, 136.3, 129.6, 129.2, 128.9, 126.9, 125.7, 125.6, 123.7, 122.3, 45.1, 34.5, 31.4, 18.8.
HRMS (ESI) calcd for C$_{21}$H$_{24}$N $[\text{M} + \text{H}]^+$ 290.1903, found 290.1909.

4-methyl-2-(2-methylbenzyl)quinolone (26).

According to the general procedure A.
Yellow solid (47.4 mg, 64%). M.p. = 55 – 56 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
$^1\text{H NMR}$ (400 MHz, CDCl$_3$) δ 8.08 (d, $J = 8.4$ Hz, 1H), 7.91 (dd, $J = 8.4$, 0.8 Hz, 1H), 7.73 – 7.62 (m, 1H), 7.56 – 7.46 (m, 1H), 7.22 – 7.12 (m, 4H), 6.93 (s, 1H), 4.31 (s, 2H), 2.56 (s, 3H), 2.29 (s, 3H).
$^{13}\text{C NMR}$ (100 MHz, CDCl$_3$) δ 160.7, 147.7, 144.6, 137.6, 137.2, 130.5, 130.3, 129.5, 129.2, 126.9, 126.8, 125.8, 125.7, 121.7, 43.3, 20.0, 18.8.
HRMS (ESI) calcd for C$_{18}$H$_{18}$N $[\text{M} + \text{H}]^+$ 248.1434, found 248.1437.

2-(3,4-dimethoxybenzyl)-4-methylquinoline (27).

According to the general procedure A.
Yellow oil (80.9 mg, 92%).
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
$^1\text{H NMR}$ (400 MHz, CDCl$_3$) δ 8.09 (d, $J = 8.4$ Hz, 1H), 7.90 (d, $J = 8.4$, 0.8 Hz, 1H), 7.49 (t, $J = 7.6$ Hz, 1H), 7.49 (t, $J = 7.6$ Hz, 1H), 7.05 (s, 1H), 6.90 – 6.83 (m, 2H), 6.82 – 6.75 (m, 1H), 4.22 (s, 2H), 3.83 (s, 3H), 3.81 (s, 3H), 2.58 (s, 3H).
$^{13}\text{C NMR}$ (100 MHz, CDCl$_3$) δ 161.1, 149.0, 147.5, 147.6, 144.6, 131.9, 129.4, 129.1, 126.8, 125.7, 123.6, 122.0, 121.2, 112.4, 111.2, 55.8, 45.1, 18.7.
HRMS (ESI) calcd for C$_{19}$H$_{20}$O$_2$ [M + H]$^+$ 294.1489, found 294.1489.

2-(3-fluorobenzyl)-4-methylquinoline (28).
According to the general procedure A.
Brown solid (27.1 mg, 36%). M.p. = 50 – 51 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.32 – 7.21 (m, 1H), 7.13 – 6.97 (m, 3H), 6.91 (t, J = 8.4 Hz, 1H), 4.28 (s, 2H), 2.62 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 163.1 (d, J = 245.8 Hz), 160.1, 147.8, 145.0, 141.9 (d, J = 7.3 Hz), 130.1 (d, J = 8.4 Hz), 129.5 (d, J = 25.5 Hz), 127.0, 126.0, 125.0, 124.9, 123.8, 122.2, 116.2 (d, J = 21.2 Hz), 113.5 (d, J = 21.0 Hz), 45.2 (d, J = 1.5 Hz), 18.8.

HRMS (ESI) calcd for C$_{17}$H$_{15}$FN [M + H]$^+$ 252.1183, found 252.1187.

2-(4-chlorobenzyl)-4-methylquinoline (29).

According to the general procedure A.
Yellow solid (36.8 mg, 46%). M.p. = 41 – 42 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.07 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.30 – 7.19 (m, 4H), 7.02 (s, 1H), 4.24 (s, 2H), 2.60 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 160.3, 147.8, 144.9, 137.9, 132.4, 130.6, 129.6, 129.3, 128.8, 127.0, 126.0, 123.8, 122.1, 44.9, 18.8.

HRMS (ESI) calcd for C$_{17}$H$_{15}$ClN [M + H]$^+$ 268.0888, found 268.0891.

4-methyl-2-(naphthalen-2-ylmethyl)quinolone (30).

According to the general procedure A.
Yellow solid (53.3 mg, 64%). M.p. = 48 – 49 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.12 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.75 (dd, J = 11.6, 4.8 Hz, 4H), 7.70 – 7.62 (m, 1H), 7.46 (dd, J = 11.2, 4.0 Hz, 1H), 7.44 – 7.32 (m, 3H), 7.03 (s, 1H), 4.43 (s, 2H), 2.50 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 160.8, 147.7, 144.7, 137.0, 133.7, 132.3, 129.6, 129.2, 128.3, 127.8, 127.7, 127.6, 127.5, 126.9, 126.1, 125.8, 125.6, 123.7, 122.3, 45.7, 18.7.

HRMS (ESI) calcd for C$_{21}$H$_{18}$N [M + H]$^+$ 284.1434, found 284.1438.
(R)-4-methyl-2-(1-phenylethyl)quinolone (31).

According to the general procedure A.
Red solid (38.5 mg, 52%). M.p. = 63 – 64 °C.
Rf 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.73 – 7.62 (m, 1H), 7.51 (dd, J = 11.2, 4.0 Hz, 1H), 7.36 (d, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 7.02 (s, 1H), 4.45 (q, J = 7.2 Hz, 1H), 2.59 (s, 3H), 1.78 (d, J = 7.2 Hz, 3H).
13C NMR (100 MHz, CDCl3) δ 164.9, 147.6, 144.9, 144.5, 129.9, 129.1, 128.6, 127.9, 127.1, 126.5, 125.8, 123.7, 121.4, 48.1, 20.5, 18.9.

2-(benzo[b]thiophen-3-ylmethyl)-4-methylquinoline (32).

According to the general procedure A.
Yellow solid (63.3 mg, 73%). M.p. = 77 – 78 °C.
Rf 0.50 (Petroleum ether/EtOAc, 10/1).
1H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.88 – 7.77 (m, 2H), 7.70 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.36 – 7.27 (m, 2H), 7.19 (s, 1H), 6.51 (s, 2H), 2.56 (s, 3H).
13C NMR (100 MHz, CDCl3) δ 159.6, 147.8, 144.9, 144.5, 129.9, 129.1, 128.6, 127.9, 127.1, 125.9, 124.4, 124.2, 123.8, 123.7, 122.9, 122.4, 121.9, 38.9, 18.8.
HRMS (ESI) calcd for C19H16NS [M + H]+ 290.0998, found 290.0998.

methyl 1-((4-methylquinolin-2-yl)methyl)-1H-indole-3-carboxylate (33).

According to the general procedure A.
Yellow solid (68.5 mg, 84%). M.p. = 145 – 146 °C.
Rf 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl3) δ 8.21 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.31 – 7.16 (m, 2H), 6.75 (s, 1H), 5.56 (s, 2H), 3.92 (s, 3H), 2.50 (s, 3H).
13C NMR (100 MHz, CDCl3) δ 165.5, 155.9, 147.5, 146.2, 136.9, 134.9, 129.8, 129.7, 127.5, 126.9, 126.7, 123.9, 123.2, 122.2, 121.8, 119.1, 110.6, 108.0, 53.5, 51.1, 18.9.
HRMS (ESI) calcd for C21H19N2O2 [M + H]+ 331.1441, found 331.1442.
4-methyl-2-(phenoxy)methyl)quinolone (34).

![Chemical Structure]

According to the general procedure A.
Yellow oil (47.1 mg, 63%).
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, J = 8.4 Hz, 1H), 7.99 (dd, J = 8.4, 0.8 Hz, 1H), 7.72 (ddd, J = 8.4, 6.8, 1.2 Hz, 1H), 7.56 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.52 (s, 1H), 7.36 – 7.25 (m, 2H), 7.03 (dd, J = 8.8, 0.8 Hz, 2H), 6.96 (t, J = 7.2 Hz, 1H), 5.34 (s, 2H), 2.71 (s, 3H).
13C NMR (100 MHz, CDCl$_3$) δ 158.6, 157.7, 147.5, 145.5, 129.7, 129.6, 127.8, 126.4, 123.9, 121.3, 119.9, 115.0, 71.4, 19.1.
HRMS (ESI) calcd for C$_{17}$H$_{16}$NO $[M + H]^+$ 250.1226, found 250.1226.

4-methyl-2-((p-tolyloxy)methyl)quinolone (35).

![Chemical Structure]

According to the general procedure A.
Yellow oil (40.2 mg, 51%).
R_f 0.50 (Petroleum ether/EtOAc, 10/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.07 (d, J = 8.4 Hz, 1H), 7.96 (dd, J = 8.4, 0.4 Hz, 1H), 7.75 – 7.66 (m, 1H), 7.60 – 7.45 (m, 2H), 7.07 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 5.30 (s, 2H), 2.68 (s, 3H), 2.27 (s, 3H).
13C NMR (100 MHz, CDCl$_3$) δ 157.9, 156.5, 147.5, 145.5, 130.4, 130.1, 129.6, 129.5, 126.3, 123.9, 119.8, 114.8, 71.5, 20.6, 19.0.
HRMS (ESI) calcd for C$_{18}$H$_{18}$NO $[M + H]^+$ 264.1383, found 264.1386.

2-((4-((tert-butyl)phenoxy)methyl)-4-methylquinoline (36).

![Chemical Structure]

According to the general procedure A.
Brown solid (60.4 mg, 66%). M.p. = 35 – 36 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.60 – 7.45 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 5.32 (s, 2H), 2.69 (s, 3H),
1.29 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 157.9, 156.4, 147.5, 145.4, 143.9, 129.6, 129.5, 127.7, 126.4, 126.3, 123.9, 119.9, 114.4, 71.5, 34.2, 31.6, 19.0.

HRMS (ESI) calcd for C$_{21}$H$_{24}$NO [M + H]$^+$ 306.1852, found 306.1856.

2-((4-fluorophenoxy)methyl)-4-methylquinoline (37).

![Chemical structure of 2-((4-fluorophenoxy)methyl)-4-methylquinoline (37).]

According to the general procedure A.
Yellow solid (50.5 mg, 63%). M.p. = 54 – 55 °C.
R_f 0.50 (Petroleum ether/EtOAc, 10/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.07 (d, $J = 8.4$ Hz, 1H), 7.97 (dd, $J = 8.4$, 0.8 Hz, 1H), 7.71 (ddd, $J = 8.4$, 6.8, 1.2 Hz, 1H), 7.55 (ddd, $J = 8.4$, 7.2, 1.2 Hz, 1H), 7.48 (s, 1H), 6.96 (d, $J = 6.4$ Hz, 4H), 5.28 (s, 2H), 2.69 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 157.6 (d, $J = 240$ Hz), 157.4, 154.7, 147.5, 145.5, 129.6 (d, $J = 2.5$ Hz), 127.7, 126.4, 123.9, 119.8, 116.1, 116.0, 115.9, 72.0, 19.0.

HRMS (ESI) calcd for C$_{17}$H$_{15}$FNO [M + H]$^+$ 268.1132, found 268.1136.

2-((4-chlorophenoxy)methyl)-4-methylquinoline (38).

![Chemical structure of 2-((4-chlorophenoxy)methyl)-4-methylquinoline (38).]

According to the general procedure A.
Yellow solid (54.3 mg, 64%). M.p. = 77 – 78 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.10 (d, $J = 8.4$ Hz, 1H), 8.00 (d, $J = 8.4$ Hz, 1H), 7.75 (t, $J = 7.6$ Hz, 1H), 7.58 (t, $J = 7.6$ Hz, 1H), 7.49 (s, 1H), 7.25 (d, $J = 8.4$ Hz, 2H), 6.98 (d, $J = 8.4$ Hz, 2H), 5.32 (s, 2H), 2.72 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 157.2, 157.1, 147.5, 145.6, 129.6, 126.5, 126.1, 123.9, 119.8, 116.3, 71.7, 19.0.

HRMS (ESI) calcd for C$_{17}$H$_{15}$ClNO [M + H]$^+$ 284.0837, found 284.0839.

2-((4-bromophenoxy)methyl)-4-methylquinoline (39).

![Chemical structure of 2-((4-bromophenoxy)methyl)-4-methylquinoline (39).]

According to the general procedure A.
Yellow solid (54.0 mg, 55%). M.p. = 72 – 73 °C.
R_f 0.50 (Petroleum ether/EtOAc, 10/1).
1H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 7.97 (dd, J = 8.4, 0.8 Hz, 1H), 7.71 (ddd, J = 8.4, 6.8, 1.2 Hz, 1H), 7.55 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.45 (s, 1H), 7.41 – 7.32 (m, 2H), 6.94 – 6.85 (m, 2H), 5.28 (s, 2H), 2.69 (s, 3H). **13C NMR** (100 MHz, CDCl₃) δ 157.7, 157.0, 147.5, 145.6, 132.5, 129.6, 129.6, 127.7, 126.5, 123.9, 119.8, 116.8, 113.5, 71.6, 19.0.

HRMS (ESI) calcd for C₁₇H₁₅BrNO [M + H]⁺ 328.0332, found 328.0334.

2-((3-chlorophenoxy)methyl)-4-methylquinoline (40).

![2-((3-chlorophenoxy)methyl)-4-methylquinoline (40)](image)

According to the general procedure A.

Yellow oil (34.8 mg, 41%).

R_f 0.50 (Petroleum ether/EtOAc, 10/1).

1H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.6 Hz, 1H), 7.98 (d, J = 7.6 Hz, 1H), 7.72 (t, J = 6.8 Hz, 1H), 7.56 (t, J = 6.8 Hz, 1H), 7.46 (s, 1H), 7.19 (td, J = 8.0, 2.4 Hz, 1H), 7.06 (d, J = 1.6 Hz, 1H), 7.00 – 6.83 (m, 2H), 5.30 (d, J = 2.4 Hz, 2H), 2.71 (d, J = 2.0 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ 159.3, 156.9, 147.4, 145.6, 135.1, 130.4, 129.7, 129.6, 127.8, 126.5, 123.9, 121.5, 119.8, 115.7, 113.2, 71.6, 19.0.

HRMS (ESI) calcd for C₁₇H₁₅ClNO [M + H]⁺ 284.0837, found 284.0838.

4-methyl-2-((p-tolylthio)methyl)quinolone (41).

![4-methyl-2-((p-tolylthio)methyl)quinolone (41)](image)

According to the general procedure A.

Brown oil (31.8 mg, 38%).

R_f 0.50 (Petroleum ether/EtOAc, 10/1).

1H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.73 – 7.62 (m, 1H), 7.59 – 7.47 (m, 1H), 7.34 (s, 1H), 7.26 (t, J = 5.2 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 4.35 (s, 2H), 2.64 (s, 3H), 2.27 (s, 3H). **13C NMR** (100 MHz, CDCl₃) δ 158.0, 147.5, 145.6, 135.1, 130.4, 129.7, 129.6, 127.8, 126.5, 123.9, 121.5, 119.8, 115.7, 113.2, 116.0.

HRMS (ESI) calcd for C₁₈H₁₈NS [M + H]⁺ 280.1154, found 280.1156.

2-(((4-(tert-butyl)phenyl)thio)methyl)-4-methylquinoline (42).

![2-(((4-(tert-butyl)phenyl)thio)methyl)-4-methylquinoline (42)](image)

According to the general procedure A.
Yellow solid (34.7 mg, 36%). M.p. = 40 – 41 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.03 (d, $J = 8.4$ Hz, 1H), 7.94 (d, $J = 8.4$ Hz, 1H), 7.68 (t, $J = 7.6$ Hz, 1H), 7.52 (t, $J = 7.6$ Hz, 1H), 7.37 – 7.28 (m, 3H), 7.27 – 7.22 (m, 2H), 4.36 (s, 2H), 2.64 (s, 3H), 1.26 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 158.0, 149.7, 147.6, 145.0, 132.5, 129.8, 129.7, 129.3, 127.3, 126.2, 126.0, 123.7, 121.8, 41.7, 34.6, 31.4, 18.9.
HRMS (ESI) calcd for C$_{21}$H$_{24}$N$_2$S [M + H]$^+$ 322.1624, found 322.1620.

2-(((4-fluorophenyl)thio)methyl)-4-methylquinoline (43).

According to the general procedure A.
Yellow oil (28.0 mg, 33%).
R_f 0.50 (Petroleum ether/EtOAc, 10/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.01 (d, $J = 8.4$ Hz, 1H), 7.94 (dd, $J = 8.4$, 0.8 Hz, 1H), 7.68 (ddd, $J = 8.4$, 6.8, 1.2 Hz, 1H), 7.53 (ddd, $J = 8.4$, 6.8, 1.2 Hz, 1H), 7.33 (ddd, $J = 12.4$, 7.2, 4.4 Hz, 3H), 6.98 – 6.87 (m, 2H), 4.31 (s, 2H), 2.66 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 162.1 (d, $J = 248$ Hz), 157.7, 147.5, 145.1, 132.8 (d, $J = 8.0$ Hz), 130.6 (d, $J = 3.2$ Hz), 129.7, 129.5, 127.3, 126.3, 123.7, 121.7, 116.0 (d, $J = 22.0$ Hz), 42.4, 18.9.
HRMS (ESI) calcd for C$_{17}$H$_{15}$FNS [M + H]$^+$ 284.0904, found 284.0906.

4-methyl-2-(((o-tolylthio)methyl)quinolone (44).

According to the general procedure A.
Brown solid (48.5 mg, 58%). M.p. = 58 – 59 °C.
R_f 0.30 (Petroleum ether/EtOAc, 5/1).
1H NMR (400 MHz, CDCl$_3$) δ 8.05 (d, $J = 8.4$ Hz, 1H), 7.94 (d, $J = 8.4$ Hz, 1H), 7.69 (dd, $J = 11.2$, 4.0 Hz, 1H), 7.53 (t, $J = 7.6$ Hz, 1H), 7.41 – 7.36 (m, 1H), 7.34 (s, 1H), 7.17 – 7.02 (m, 3H), 4.37 (s, 2H), 2.65 (s, 3H), 2.36 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 157.7, 147.6, 145.1, 137.6, 135.5, 130.1, 129.7, 129.4, 128.6, 127.3, 126.6, 126.2, 126.0, 123.7, 121.7, 40.5, 20.4, 18.9.
HRMS (ESI) calcd for C$_{18}$H$_{18}$NS [M + H]$^+$ 280.1154, found 280.1156.

2-benzyl-5,7-dichloro-4-(4-fluorophenoxy)quinolone (45).
According to the *general procedure A*.

Yellow solid (35.7 mg, 30%). M.p. = 112 – 113 °C.

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 2.0 Hz, 1H), 7.53 (d, J = 2.0 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.22 – 7.15 (m, 3H), 7.12 – 7.05 (m, 2H), 7.04 – 6.98 (m, 2H), 6.46 (s, 1H), 4.12 (s, 2H). **13C NMR** (100 MHz, CDCl₃) δ 164.0, 162.6, 160.0 (d, J = 244.3 Hz), 151.5, 150.1 (d, J = 2.7 Hz), 138.4, 135.2, 130.2, 129.0, 128.8, 127.7, 126.8, 122.1, 122.0, 117.1 (d, J = 23.4 Hz), 117.0, 107.4, 45.3.

HRMS (ESI) calcd for C₂₂H₁₅Cl₂FNO [M + H]⁺ 398.0509, found 398.0504.

1-(4-((1-benzylisoquinolin-5-yl)sulfonyl)-1,4-diazepan-1-yl)ethan-1-one (46).

According to the *general procedure A*.

Yellow oil (103.6 mg, 82%).

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl₃) δ 8.65 (dd, J = 6.4, 2.8 Hz, 1H), 8.41 (dd, J = 8.4, 4.4 Hz, 1H), 8.31 (d, J = 6.4 Hz, 1H), 8.28 – 8.20 (m, 1H), 7.65 – 7.52 (m, 1H), 7.29 – 7.22 (m, 4H), 4.71 (s, 2H), 4.37 – 3.69 (m, 1H), 3.62 (ddd, J = 13.2, 11.2, 6.4 Hz, 3H), 3.52 – 3.47 (m, 3H), 3.43 (dd, J = 11.6, 6.4 Hz, 2H), 3.37 (t, J = 6.0 Hz, 1H), 2.05 (s, 3H), 2.01 – 1.92 (m, 2H). **13C NMR** (100 MHz, CDCl₃) δ 170.3, 170.1, 161.3, 161.2, 144.2, 144.1, 138.9, 134.8, 132.6, 132.4, 131.7, 128.8, 128.6, 127.9, 126.6, 125.7, 116.4, 116.3, 50.8, 50.1, 49.2, 48.4, 48.0, 47.7, 46.9, 44.5, 42.7, 29.0, 27.7, 21.6, 21.1.

HRMS (ESI) calcd for C₂₃H₂₆N₃O₃S [M + H]⁺ 424.1689, found 424.1693.

ethyl 4-(2-benzyl-8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (47).

According to the *general procedure A*.

Red solid (48.1 mg, 34%). M.p. = 119 – 120 °C.

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl₃) δ 7.39 – 7.14 (m, 9H), 6.88 (d, J = 7.6 Hz, 1H), 4.23 – 4.02 (m, 11H), 3.79 (s, 2H), 3.41 – 3.21 (m, 2H), 3.19 – 3.03 (m, 2H), 2.87 – 2.70 (m, 2H), 2.53 – 2.21 (m, 2H), 1.26 (t, J =
7.2 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 158.1, 156.3, 155.6, 139.9, 138.3, 138.0, 137.6, 134.4, 132.9, 130.7, 129.2, 129.0, 128.6, 126.4, 126.2, 121.7, 61.4, 44.9, 44.4, 31.8, 31.4, 31.0, 30.7, 29.8, 14.8.

HRMS (ESI) calcd for C$_{29}$H$_{30}$ClN$_2$O$_2$ [M + H]$^+$ 473.1990, found 473.1993.

1-(6-benzylpyridin-3-yl)-2-methyl-2-(pyridin-3-yl)propan-1-one (48).

According to the general procedure A.

Yellow oil (31.3 mg, 33%).

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.66 – 8.47 (m, 3H), 7.74 (d, $J = 7.6$ Hz, 1H), 7.58 (d, $J = 8.0$ Hz, 1H), 7.28 (d, $J = 7.2$ Hz, 3H), 7.24 – 7.16 (m, 3H), 7.03 (d, $J = 8.4$ Hz, 1H), 4.10 (s, 2H), 1.65 (s, 6H).

13C NMR (100 MHz, CDCl$_3$) δ 200.9, 164.6, 150.9, 148.6, 147.5, 140.2, 138.4, 137.8, 133.5, 129.2, 128.8, 128.7, 126.8, 124.0, 122.7, 50.3, 44.7, 27.5.

HRMS (ESI) calcd for C$_{21}$H$_{21}$N$_2$O [M + H]$^+$ 317.1648, found 317.1650.

1-(3,4-dimethoxybenzyl)-6,7-dimethoxyisoquinoline (49).

According to the general procedure A.

Yellow solid (89.5 mg, 88%). M.p. = 138 – 139 °C.

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 8.37 (d, $J = 5.6$ Hz, 1H), 7.42 (d, $J = 5.6$ Hz, 1H), 7.33 (s, 1H), 7.03 (s, 1H), 6.82 (d, $J = 7.2$ Hz, 2H), 6.76 (d, $J = 8.4$ Hz, 1H), 4.53 (s, 2H), 3.98 (s, 3H), 3.90 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 157.7, 152.3, 149.7, 148.9, 147.4, 140.9, 133.4, 132.2, 128.8, 120.4, 118.7, 111.8, 111.1, 105.2, 104.1, 55.9, 55.8, 55.7, 42.2.

HRMS (ESI) calcd for C$_{20}$H$_{22}$NO$_4$ [M + H]$^+$ 340.1543, found 340.1545.

prop-1-ene-1,1,3-triyltribenzene (51).

The spectral data is consistent with the literature data.\(^7\)

Yellow oil.

R_f 0.30 (Petroleum ether/EtOAc, 5/1).

1H NMR (400 MHz, CDCl$_3$) δ 7.39 (t, $J = 7.2$ Hz, 2H), 7.36 – 7.30 (m, 2H), 7.27 – 7.23 (m, 8H), 7.20 (d, $J = 5.6$ Hz, 3H), 6.27 (t, $J = 7.6$ Hz, 1H), 3.47 (d, $J = 7.6$ Hz, 2H).

13C NMR (100 MHz, CDCl$_3$) δ
1,2-di(naphthalen-2-yl)ethane (53).

According to the *general procedure A*. The spectral data is consistent with the literature data.\(^8\)

Yellow solid. M.p. = 164 – 165 °C.

\(R_f 0.30\) (Petroleum ether/EtOAc, 5/1).

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta 7.77\) (dd, \(J = 15.4, 8.0\) Hz, 6H), 7.63 (s, 2H), 7.47 – 7.37 (m, 4H), 7.33 (d, \(J = 8.4\) Hz, 2H), 3.15 (s, 4H).

\(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)) \(\delta 139.4, 133.8, 132.2, 128.0, 127.8, 127.6, 126.5, 126.0, 125.3, 38.1\).

6. Gram-scale Reaction

\[
\begin{align*}
\text{N} & \quad \text{TFA} \\
\text{1} & \quad (0.8 \text{ mL, 6 mmol, 1.0 equiv}) \\
\text{2} & \quad (2.0 \text{ g, 12 mmol, 2.0 equiv}) \\
\text{3} & \quad (1.16 \text{ g, 83%})
\end{align*}
\]

To a 250 mL glass vial was added lepidine 1 (0.8 mL, 6 mmol, 1.0 equiv), benzyltrimethylsilane 2 (2.0 g, 12 mmol, 2.0 equiv), (NH\(_4\))\(_2\)S\(_2\)O\(_8\) (4.0 g, 18 mmol, 3.0 equiv), TFA (0.9 mL, 12 mmol, 2.0 equiv) and 30 mL of DMSO. The reaction mixture was stirred rapidly at 30 °C for 24 h. The mixture was diluted with 100 mL of aqueous 1 M NaHCO\(_3\) solution, and extracted with DCM (3 × 100 mL). The combined organic extracts were washed with brine (200 mL), dried over Na\(_2\)SO\(_4\), and concentrated in vacuo. After purification by flash column chromatography on silica gel, the product was obtained in 83% yield.

References

NMR Spectra

1H NMR spectrum of compound 3
13C NMR spectrum of compound 3

1H NMR spectrum of compound 4
\begin{center}
\textbf{C NMR spectrum of compound 4}
\end{center}

\begin{center}
\textbf{H NMR spectrum of compound 5}
\end{center}
13C NMR spectrum of compound 5

1H NMR spectrum of compound 6
\(^{13}\)C NMR spectrum of compound 6

\(^{1}\)H NMR spectrum of compound 7
13C NMR spectrum of compound 7

1H NMR spectrum of compound 8
13C NMR spectrum of compound 8

1H NMR spectrum of compound 9
$\text{\(^1\)H NMR spectrum of compound 10}$

$\text{\(^{13}\)C NMR spectrum of compound 9}$
13C NMR spectrum of compound 11

1H NMR spectrum of compound 12
13C NMR spectrum of compound 12

1H NMR spectrum of compound 13
13C NMR spectrum of compound 13

1H NMR spectrum of compound 14
13C NMR spectrum of compound 14

1H NMR spectrum of compound 15
13C NMR spectrum of compound 15

1H NMR spectrum of compound 16
13C NMR spectrum of compound 16

1H NMR spectrum of compound 17
\(^{13}\)C NMR spectrum of compound 17

\(^1\)H NMR spectrum of compound 18
13C NMR spectrum of compound 18

1H NMR spectrum of compound 19
13C NMR spectrum of compound 19

1H NMR spectrum of compound 20
13C NMR spectrum of compound 21

1H NMR spectrum of compound 22
13C NMR spectrum of compound 22

1H NMR spectrum of compound 23
13C NMR spectrum of compound 23

1H NMR spectrum of compound 24
\(^{13}\text{C}\) NMR spectrum of compound 24

\(^1\text{H}\) NMR spectrum of compound 25
13C NMR spectrum of compound \textbf{25}

1H NMR spectrum of compound \textbf{26}
13C NMR spectrum of compound 26

1H NMR spectrum of compound 27
13C NMR spectrum of compound 27

1H NMR spectrum of compound 28
13C NMR spectrum of compound 28

1H NMR spectrum of compound 29
\textbf{13C NMR spectrum of compound 29}

\textbf{1H NMR spectrum of compound 30}
13C NMR spectrum of compound 30

1H NMR spectrum of compound 31
13C NMR spectrum of compound 31

1H NMR spectrum of compound 32
13C NMR spectrum of compound 32

1H NMR spectrum of compound 33
13C NMR spectrum of compound 33

1H NMR spectrum of compound 34
13C NMR spectrum of compound 34

1H NMR spectrum of compound 35
13C NMR spectrum of compound 35

1H NMR spectrum of compound 36
1H NMR spectrum of compound 37

13C NMR spectrum of compound 36
13C NMR spectrum of compound 37

1H NMR spectrum of compound 38
13C NMR spectrum of compound 38

1H NMR spectrum of compound 39
13C NMR spectrum of compound 39

1H NMR spectrum of compound 40
C NMR spectrum of compound 40

\(^1\)H NMR spectrum of compound 41
13C NMR spectrum of compound 41

1H NMR spectrum of compound 42
13C NMR spectrum of compound 42

1H NMR spectrum of compound 43
\[\text{\(^1\)H NMR spectrum of compound 44}\]

\[\text{\(^{13}\)C NMR spectrum of compound 43}\]
13C NMR spectrum of compound 44

1H NMR spectrum of compound 45
13C NMR spectrum of compound 45

1H NMR spectrum of compound 46
13C NMR spectrum of compound 46

1H NMR spectrum of compound 47
13C NMR spectrum of compound 47

1H NMR spectrum of compound 48
13C NMR spectrum of compound 48

1H NMR spectrum of compound 49
13C NMR spectrum of compound 49

1H NMR spectrum of compound 51
13C NMR spectrum of compound 51

1H NMR spectrum of compound 53
13C NMR spectrum of compound 53