Supporting information

A Free-Radical-Promoted Stereospecific Denitor Silylation of β-Nitroalkenes with Silanes

Xi Zhang, †a Ming-Xia Liu, †a Tong-Lin Wang, a Yong-Qing Wang, a Xi-Cun Wang, *a
Zheng-Jun Quan *a

† a Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China.

Table of Contents

1. General Information .. 2
2. Typical Procedure for the Synthesis of 3 .. 2
3. Mechanism supplemental data material. .. 3
4. Spectroscopic Data of Compounds .. 4
5. Copies of 1H NMR and 13C NMR Spectra for Compound ... 12
1. General Information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. 1H NMR and 13C NMR data analyses were performed with a Varian Mercury plus-400 and Agilent 600 MHz DD2 instruments CDCl$_3$ and DMSO-d_6 as solvent and tetramethylsilane (TMS) as the internal standard were employed. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the 1H NMR spectrum as 0.00 ppm. The data of 1H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet and br = broad), coupling constant (J values) in Hz and integration. Chemical shift for 13C NMR spectra were recorded in ppm from TMS using the central peak of CDCl$_3$ (77.0 ppm) as the internal standard. 19F NMR spectra were recorded on a Varian Mercury 400 plus instrument. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Melting points were measured with an XT-4 apparatus. High-resolution mass spectra (HRMS) (ESI) were obtained with a Bruker Daltonics APEX II 47e and Orbitrap Elite mass spectrometer. Column chromatography was generally performed on silica gel (200-300 mesh) and TLC analyses were conducted on silica gel GF254 plates. All reagents were directly used from purchased without any further purification unless otherwise specified.

2. Typical Procedure for the Synthesis of 3

\[
\begin{align*}
\text{Ph}-\text{CH}=\text{CH}_2 \quad &\rightarrow \quad \text{Ph}-\text{CH}_2\text{Si(\text{Et})}_3 \\
1a &\quad + \quad \text{H-SiEt}_3 &\quad \text{Cul (5 mol\%)} &\quad \text{DTBP (3.0 eq.)} &\quad \text{t-BuOH, 80 °C, 8 h} &\quad 3a
\end{align*}
\]

The mixture of (E)-(2-nitrovinyl)benzene 1a (0.2 mmol), triethylsilane 2a (1.0 mmol), Cul (5mol%) and DTBP(3.0 eq.) in t-BuOH (2 mL) was stirred at 80°C for 8 hours under air atmosphere. After the reaction completed (monitored by TLC analysis), saturated aq. Na$_2$SO$_3$ was added to the mixture to quench the reaction and extracted with ethyl acetate (3×25 mL). The combined organic layers were dried over MgSO$_4$, filtered, and the volatiles were removed in vacuum. The mixture was purified by using silica gel column chromatography (petroleum ether). The corresponding product 3a was obtained as a colorless liquid (77 mg, 74% yield).
3. Mechanism supplemental data material.

\[\text{NO}_2 \]

120.06552

$\text{C}_4\text{H}_{10}\text{O}_3\text{N}$

-0.00000 ppm

\[\text{NL:} \]

$9.46E5$

$\text{C}_4\text{H}_{9}\text{N}_1\text{O}_3 + \text{H:} \]

$\text{C}_4\text{H}_{10}\text{N}_1\text{O}_3$

pa Chrg 1

\[\text{Si} \]

\[\text{O} \]

\[\text{N} \]

$\times 10^4$

Scan (50.1 sec) 2018-12-29-04.d

272.24025

273.24201

274.24216

<table>
<thead>
<tr>
<th>m/z</th>
<th>Z</th>
<th>Abund</th>
<th>Formula</th>
<th>Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>121.05088</td>
<td>1</td>
<td>94516.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.12782</td>
<td>1</td>
<td>79775.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142.15859</td>
<td>1</td>
<td>994209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.16202</td>
<td>1</td>
<td>96963.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149.02282</td>
<td>1</td>
<td>63314.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158.15347</td>
<td>1</td>
<td>63827.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>272.24025</td>
<td>1</td>
<td>95912.8</td>
<td>C15 H34 N O Si</td>
<td>(M+H)+</td>
</tr>
</tbody>
</table>
4. Spectroscopic Data of Compounds

(E)-triethyl(styryl)silane (3a). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) $\delta =$ 7.44 (d, $J =$ 7.6 Hz, 2H), 7.33 (t, $J =$ 7.2 Hz, 2H), 7.27 – 7.23 (m, 1H), 6.89 (d, $J =$ 19.2 Hz, 1H), 6.43 (dd, $J =$ 19.2, 1.2 Hz, 1H), 0.99 (t, $J =$ 7.2 Hz, 9H), 0.66 (q, $J =$ 8.0 Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) $\delta =$ 144.78, 138.50, 128.46, 127.85, 126.28, 125.93, 7.38, 3.51. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{22}$Si: 305.1107 [M+H]$^+$, Found 305.1110.

(E)-triethyl(4-methylstyryl)silane (3b). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) $\delta =$ 7.35 (d, $J =$ 8.0 Hz, 2H), 7.15 (d, $J =$ 8.0 Hz, 2H), 6.88 (d, $J =$ 19.2 Hz, 1H), 6.37 (d, $J =$ 19.2 Hz, 1H), 2.35 (s, 3H), 1.00 (t, $J =$ 8.0 Hz, 9H), 0.67 (q, $J =$ 8.0 Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) $\delta =$ 144.67, 137.70, 135.86, 129.15, 126.20, 124.51, 21.18, 7.39, 3.55. HRMS (ESI) m/z: Calcd for C$_{15}$H$_{24}$Si: 305.1107 [M+H]$^+$, Found 305.1111.

(E)-triethyl(3-methylstyryl)silane (3c). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta =$ 7.26 (s, 1H), 7.25 – 7.20 (m, 2H), 7.06 (d, $J =$ 7.2 Hz, 1H), 6.86 (d, $J =$ 19.2 Hz, 1H), 6.40 (d, $J =$ 19.2 Hz, 1H), 2.35 (s, 3H), 0.98 (t, $J =$ 7.8 Hz, 9H), 0.65 (q, $J =$ 7.8 Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) $\delta =$ 144.89, 138.45, 138.00, 128.63, 128.36, 126.95, 125.60, 123.47, 7.37, 3.51. HRMS (ESI) m/z: Calcd for C$_{15}$H$_{24}$Si: 305.1107 [M+H]$^+$, Found 305.1105.

(E)-triethyl(2-methylstyryl)silane (3d). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta =$ 7.51 (dd, $J =$ 7.2, 1.8 Hz, 1H), 7.19 – 7.11 (m, 4H), 6.29 (d, $J =$ 19.2 Hz, 1H), 2.37 (s, 3H), 0.99 (t, $J =$ 7.8 Hz, 9H), 0.66 (q, $J =$ 7.8 Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) $\delta =$ 142.74, 138.00, 135.10, 130.20, 127.76, 127.59, 126.03, 125.27, 19.59, 7.38, 3.56. HRMS (ESI) m/z: Calcd for C$_{15}$H$_{24}$Si: 305.1107 [M+H]$^+$, Found 305.1110.
(E)-triethyl(4-methoxystyryl)silane (3e). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.38 (d, J = 9.0 Hz, 2H), 6.87 – 6.84 (m, 2H), 6.81 (s, 1H), 6.24 (d, J = 19.2 Hz, 1H), 3.81 (s, 3H), 0.98 (t, J = 7.8 Hz, 9H), 0.64 (q, J = 7.8 Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) δ = 159.44, 144.15, 131.56, 127.4, 123.02, 113.84, 55.3, 7.39, 3.57. HRMS (ESI) m/z: Calcd for C$_{15}$H$_{24}$OSi: 305.1107 [M+H]$^+$, Found 305.1110.

(E)-triethyl(3-methoxystyryl)silane (3f). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.23 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 6.99 – 6.97 (m, 1H), 6.86 (d, J = 19.2 Hz, 1H), 6.81 (dd, J = 7.8, 2.4 Hz, 1H), 6.41 (d, J = 19.2 Hz, 1H), 0.98 (t, J = 7.8 Hz, 9H), 0.66 (q, J = 7.8 Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) δ = 159.83, 144.61, 139.99, 129.41, 126.31, 119.04, 113.69, 111.33, 55.22, 7.37, 3.49. HRMS (ESI) m/z: Calcd for C$_{15}$H$_{24}$OSi: 305.1107 [M+H]$^+$, Found 305.1110.

(E)-triethyl(4-fluorostyryl)silane (3g). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.42 – 7.38 (m, 2H), 7.01 (t, J = 8.4 Hz, 2H), 6.84 (d, J = 19.2 Hz, 1H), 6.32 (d, J = 19.2 Hz, 1H), 0.98 (t, J = 7.8 Hz, 9H), 0.65 (q, J = 7.8 Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) δ = 162.51 (m, J = 245.9 Hz), 143.46, 134.75 (d, J = 3.0 Hz), 127.78 (d, J = 8.0 Hz), 125.65 (d, J = 2.3 Hz), 115.3 (d, J = 21.4 Hz), 7.35, 3.48. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$FSi: 237.1469 [M+H]$^+$, Found 237.1466.

(E)-triethyl(3-fluorostyryl)silane (3h). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.30 – 7.26 (m, 1H), 7.20 – 7.18 (m, 1H), 7.17 – 7.13 (m, 1H), 6.96 – 6.92 (m, 1H), 6.85 (d, J = 19.2 Hz, 1H), 6.45 (d, J = 19.2 Hz, 1H), 0.99 (t, J = 7.8 Hz, 9H), 0.67 (q, J = 7.8 Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) δ = 163.18 (d, J = 243.8 Hz), 143.49 (d, J = 2.6 Hz), 140.9 (d, J = 7.1 Hz), 129.85 (d, J = 8.1 Hz), 127.83, 122.24 (d, J = 2.7 Hz), 114.58 (d, J = 21.5 Hz), 112.56 (d, J = 21.3 Hz), 7.34, 3.43. HRMS (ESI) m/z: Calcd for
(E)-triethyl(2-fluorostyryl)silane (3i). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta = 7.57 – 7.53$ (m, 1H), 7.23 – 7.18 (m, 1H), 7.13 – 7.08 (m, 2H), 7.04 – 7.00 (m, 1H), 6.48 (d, $J = 20.4$ Hz, 1H), 0.99 (t, $J = 7.8$ Hz, 9H), 0.67 (q, $J = 7.8$ Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) $\delta = 160.12$ (d, $J = 247.8$ Hz), 136.40 (d, $J = 4.7$ Hz), 129.03 (d, $J = 8.4$ Hz), 128.97 (d, $J = 3.3$ Hz), 126.62 (d, $J = 3.6$ Hz), 126.34 (d, $J = 11.6$ Hz), 123.92 (d, $J = 3.8$ Hz), 115.63 (d, $J = 22.2$ Hz), 7.34, 3.45. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$FSi: 237.1469 [M+H]$^+$, Found 237.1464.

\[
\begin{array}{c}
\text{F} \\
\text{Si}
\end{array}
\]

(E)-(4-chlorostyryl)triethylsilane (3j). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta = 7.37 – 7.34$ (m, 2H), 7.30 – 7.27 (m, 2H), 7.24 (d, $J = 10.0$ Hz, 1H), 6.82 (d, $J = 19.3$ Hz, 1H), 6.39 (d, $J = 19.2$ Hz, 1H), 0.97 (t, $J = 7.9$ Hz, 9H), 0.65 (q, $J = 7.9$ Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) $\delta = 143.38$, 136.96, 133.44, 128.59, 127.47, 126.94, 7.35, 3.44. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$ClSi: 253.1174 [M+H]$^+$, Found 253.1177

\[
\begin{array}{c}
\text{Cl} \\
\text{Si}
\end{array}
\]

(E)-(3-chlorostyryl)triethylsilane (3k). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta = 7.43$ (t, $J = 1.9$ Hz, 1H), 7.30 – 7.28 (m, 1H), 7.27 – 7.23 (m, 1H), 7.22 – 7.20 (m, 1H), 6.82 (d, $J = 19.2$ Hz, 1H), 6.45 (d, $J = 19.2$ Hz, 1H), 0.99 (t, $J = 7.8$ Hz, 9H), 0.67 (q, $J = 7.8$ Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) $\delta = 143.28$, 140.37, 134.53, 129.64, 128.10, 127.70, 126.18, 124.54, 7.32, 3.44. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$ClSi: 253.1174 [M+H]$^+$, Found 253.1179

\[
\begin{array}{c}
\text{Cl} \\
\text{Si}
\end{array}
\]

(E)-(2-chlorostyryl)triethylsilane (3l). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta = 7.60$ (dd, $J = 7.8$, 1.8 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.23 (m 1H), 7.17 (m, 1H), 6.42 (d, $J = 19.2$ Hz, 1H), 1.00 (t, $J = 7.8$ Hz, 9H), 0.68 (q, $J = 7.8$ Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) $\delta = 140.75$, 136.60, 133.02, 129.66, 129.59, 128.69, 126.72, 126.62, 7.35, 3.49. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$ClSi: 253.1174 [M+H]$^+$, Found 253.1172

\[
\begin{array}{c}
\text{Cl} \\
\text{Si}
\end{array}
\]
(E)-(4-bromostyryl)triethylsilane (3m). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.47 - 7.42$ (m, 2H), 7.32 – 7.28 (m, 2H), 6.82 (d, $J = 19.2$ Hz, 1H), 6.42 (d, $J = 19.2$ Hz, 1H), 0.98 (t, $J = 7.8$ Hz, 9H), 0.65 (q, $J = 7.8$ Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) $\delta = 143.43$, 137.39, 131.54, 127.80, 127.16, 121.65, 7.36, 3.43. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$BrSi: 297.0669 [M+H]$^+$, Found 297.0674.

(E)-(3-bromostyryl)triethylsilane (3n). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.60$ (t, $J = 1.6$ Hz, 1H), 7.39 – 7.33 (m, 2H), 7.20 (t, $J = 7.8$ Hz, 1H), 6.82 (d, $J = 19.2$ Hz, 1H), 6.45 (d, $J = 19.2$ Hz, 1H), 1.00 (t, $J = 8.0$ Hz, 9H), 0.67 (q, $J = 8.0$ Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) $\delta = 143.14$, 140.61, 130.61, 129.96, 129.13, 128.17, 124.99, 122.77, 7.34, 3.41. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$BrSi: 297.0669 [M+H]$^+$, Found 297.0674.

(E)-(2-bromostyryl)triethylsilane (3o). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta = 7.57$ (dd, $J = 7.8$, 1.2 Hz, 1H), 7.53 (dd, $J = 7.8$, 1.2 Hz, 1H), 7.27 (m, 1H), 7.22 (s, 1H), 7.11 – 7.07 (m, 1H), 6.36 (d, $J = 19.2$ Hz, 1H), 1.00 (t, $J = 7.8$ Hz, 9H), 0.68 (q, $J = 7.8$ Hz, 6H). 13C NMR (150 MHz, CDCl$_3$) $\delta = 143.49$, 138.36, 132.80, 129.89, 128.93, 127.36, 126.90, 123.61, 7.33, 3.50. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$BrSi: 297.0669 [M+H]$^+$, Found 297.0673.

(E)-triethyl(4-nitrostyryl)silane (3p). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta = 8.21 – 8.17$ (m, 2H), 7.57 – 7.53 (m, 2H), 6.93 (d, $J = 19.2$ Hz, 1H), 6.66 (d, $J = 19.2$ Hz, 1H), 0.99 (t, $J = 7.8$ Hz, 9H), 0.68 (q, $J = 7.8$ Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) $\delta = 142.13$, 132.13, 130.52, 129.34, 122.30, 120.82, 7.33, 3.35. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$NO$_2$Si: 263.1342 [M+H]$^+$, Found 263.1344.
(E)-triethyl(2-nitrostyryl)silane (3q). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.89 (d, $J = 9.0$ Hz, 1H), 7.65 (d, $J = 7.8$ Hz, 1H), 7.56 (t, $J = 7.8$ Hz, 1H), 7.38 (t, $J = 7.8$ Hz, 1H), 7.30 (d, $J = 19.2$ Hz, 1H), 6.44 (d, $J = 19.2$ Hz, 1H), 1.00 (t, $J = 7.8$ Hz, 9H), 0.68 (q, $J = 7.8$ Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) δ = 139.76, 133.14, 132.88, 128.53, 128.08, 124.20, 7.29, 3.36. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{21}$NO$_2$Si: 263.1342 [M+H]$^+$, Found 263.1343.

(E)-triethyl(4-(trifluoromethyl)styryl)silane (3r). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.57 (d, $J = 8.4$ Hz, 2H), 7.52 (d, $J = 7.2$ Hz, 2H), 6.90 (d, $J = 19.2$ Hz, 1H), 6.54 (d, $J = 19.2$ Hz, 1H), 0.98 (t, $J = 8.4$ Hz, 9H), 0.67 (q, $J = 7.2$ Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) δ = 143.23, 141.72, 129.72, 126.41, 125.41 (q, $J = 3.9$ Hz), 123.28, 109.99, 7.32, 3.39. 19F NMR (376 MHz, CDCl$_3$) δ = -62.88. HRMS (ESI) m/z: Calcd for C$_{15}$H$_{21}$F$_3$Si: 287.1437 [M+H]$^+$, Found 287.1439.

(E)-triethyl(2-(naphthalen-2-yl)vinyl)silane (3w). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) δ = 7.84 – 7.75 (m, 4H), 7.68 (dd, $J = 9.6$, 1.6 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.06 (d, $J = 19.2$ Hz, 1H), 6.55 (d, $J = 19.2$ Hz, 1H), 1.01 (t, $J = 7.6$ Hz, 9H), 0.69 (q, $J = 7.6$ Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) δ = 144.79, 135.92, 133.59, 133.23, 128.12, 128.05, 127.62, 126.47, 126.15, 125.87, 123.29, 7.42, 3.55. HRMS (ESI) m/z: Calcd for C$_{18}$H$_{24}$Si: 269.1720 [M+H]$^+$, Found 269.1724.

(E)-(2,5-dimethoxystyryl)triethylsilane (3s). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.27 (d, $J = 19.8$ Hz, 1H), 7.10 (d, $J = 3.0$ Hz, 1H), 6.81 – 6.76 (m, 2H), 6.37 (d, $J = 19.2$ Hz, 1H), 3.80 (d, $J = 2.4$ Hz, 6H), 0.99 (t, $J = 7.8$ Hz, 9H), 0.67 (q, $J = 7.8$ Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) δ = 153.78, 151.11, 138.83, 128.59, 126.51, 114.05, 112.60, 111.28, 56.41, 55.76, 7.41, 3.58. HRMS (ESI) m/z: Calcd for C$_{16}$H$_{26}$O$_2$Si: 279.1775 [M+H]$^+$, Found 279.1779.
(E)-triethyl(2-(thiophen-2-yl)vinyl)silane (3t). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.29 (dd, J = 4.8, 1.2 Hz, 1H), 7.26 – 7.25 (m, 1H), 7.19 (dd, J = 3.0, 1.2 Hz, 1H), 6.89 (d, J = 19.2 Hz, 1H), 6.19 (d, J = 19.2 Hz, 1H), 0.98 (t, J = 7.8 Hz, 9H), 0.64 (q, J = 7.8 Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) δ = 142.33, 138.60, 125.79, 125.58, 124.85, 122.32, 7.37, 3.48. HRMS (ESI) m/z: Calcd for C$_{12}$H$_{20}$Si: 225.1128 [M+H]$^+$, Found 225.1131.

(E)-triethyl(2-(furan-2-yl)vinyl)silane (3u). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) δ = 7.36 (d, J = 2.0 Hz, 1H), 6.58 (d, J = 19.6 Hz, 1H), 6.38 (dd, J = 3.2, 2.0 Hz, 1H), 6.29 (d, J = 13.6 Hz, 1H), 6.26 (d, J = 2.4 Hz, 1H), 0.97 (t, J = 7.8 Hz, 9H), 0.63 (q, J = 8.0 Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) δ = 154.22, 142.06, 132.26, 124.23, 111.34, 107.72, 7.33, 3.41. HRMS (ESI) m/z: Calcd for C$_{12}$H$_{20}$Osi: 209.1356 [M+H]$^+$, Found 209.1359.

(E)-(2-(benzo[d][1,3]dioxol-5-yl)vinyl)triethylsilane (3v). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) δ = 7.01 (d, J = 1.6 Hz, 1H), 6.86 (dd, J = 8.0, 1.6 Hz, 1H), 6.79 (d, J = 15.6 Hz, 1H), 6.76 (d, J = 4.0 Hz, 1H), 6.21 (d, J = 19.2 Hz, 1H), 5.95 (s, 2H), 0.98 (t, J = 8.0 Hz, 9H), 0.64 (q, J = 8.0 Hz, 6H). 13C NMR (151 MHz, CDCl$_3$) δ = 148.04, 147.43, 144.14, 133.34, 123.58, 121.26, 108.10, 105.40, 101.03, 7.38, 3.54. HRMS (ESI) m/z: Calcd for C$_{15}$H$_{22}$O$_2$Si: 263.1462 [M+H]$^+$, Found 263.1465.

(E)-triisopropyl(styryl)silane (3aa). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) δ = 7.45 (d, J = 6.6 Hz, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.25 (t, J = 3.6 Hz, 1H), 6.94 (d, J = 19.2 Hz, 1H), 6.39 (d, J = 19.2 Hz, 1H), 1.21 – 1.16 (m, 3H), 1.09 (d, J = 7.2 Hz, 18H). 13C NMR (151 MHz, CDCl$_3$) δ = 145.54, 138.68, 128.46, 127.80, 126.24, 123.96, 18.66, 11.00. HRMS (ESI) m/z: Calcd for C$_{17}$H$_{28}$Si: 260.1960 [M+H]$^+$, Found 260.1965.
(E)-trisopropyl(4-methylstyryl)silane (3x). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) δ = 7.35 (d, J = 7.6 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 19.6 Hz, 1H), 6.33 (d, J = 19.6 Hz, 1H), 2.35 (s, 3H), 1.23 – 1.12 (m, 3H), 1.09 (d, J = 6.8 Hz, 18H).

13C NMR (151 MHz, CDCl$_3$) δ = 145.41, 137.68, 136.04, 129.15, 126.15, 122.53, 21.17, 18.67, 11.02. HRMS (ESI) m/z: Calcd for C$_{18}$H$_{30}$Si: 275.2190 [M+H]$^+$, Found 275.2194.

(E)-trihexyl(4-methylstyryl)silane (3z). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) δ = 7.38 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 19.2 Hz, 1H), 6.40 (d, J = 19.2 Hz, 1H), 2.38 (s, 3H), 1.37 – 1.31 (m, 23H), 0.95 – 0.91 (m, 10H), 0.73 – 0.63 (m, 6H). 13C NMR (151 MHz, CDCl$_3$) δ = 144.21, 129.13, 126.18, 125.63, 33.47, 31.54, 23.81, 22.61, 21.17, 14.11, 12.65. HRMS (ESI) m/z: Calcd for C$_{27}$H$_{48}$Si: 401.3598 [M+H]$^+$, Found 401.3601.

(E)-isopropylidemethyl(4-methylstyryl)silane (3y). Colourless Oil. 1H NMR (400 MHz, CDCl$_3$) δ = 7.34 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.6 Hz, 2H), 6.86 (d, J = 19.2 Hz, 1H), 6.41 (d, J = 19.2 Hz, 1H), 2.34 (s, 3H), 0.91 (s, 9H). 13C NMR (151 MHz, CDCl$_3$) δ = 144.71, 137.76, 135.75, 129.15, 126.23, 125.37, 26.48, 21.18, 16.77, -0.03, -6.08. HRMS (ESI) m/z: Calcd for C$_{14}$H$_{22}$Si: 219.1564 [M+H]$^+$, Found 219.1566.
(E)-triphenyl(styryl)silane (3ab). Colourless Oil. 1H NMR (600 MHz, CDCl$_3$) $\delta = 7.61$ (dd, $J = 7.8, 1.2$ Hz, 6H), 7.52 – 7.49 (m, 2H), 7.46 – 7.44 (m, 2H), 7.42 – 7.39 (m, 7H), 7.38 – 7.34 (m, 2H), 7.31 – 7.28 (m, 1H), 7.01 (d, $J = 4.2$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$) $\delta = 148.88, 138.02, 136.03, 135.49, 134.47, 129.60, 128.56, 128.51, 127.92, 127.62, 122.93$. HRMS (ESI) m/z: Calcd for C$_{26}$H$_{22}$Si: 363.1564 [M+H]$^+$, Found 363.1569.
5. Copies of 1H NMR and 13C NMR Spectra for Compound

1H and 13C Spectra of compound 3a (CDCl$_3$)
1H and 13C Spectra of compound 3b (CDCl$_3$)
^1H and ^{13}C Spectra of compound 3c (CDCl$_3$)
1H and 13C Spectra of compound 3d (CDCl$_3$)
1H and 13C Spectra of compound 3e (CDCl$_3$)
1H and 13C Spectra of compound 3f (CDCl$_3$)
1H and 13C Spectra of compound 3g (CDCl$_3$)
1H and 13C Spectra of compound 3h (CDCl$_3$)
1H and 13C Spectra of compound 3i (CDCl$_3$)
^{1}H and ^{13}C Spectra of compound 3j (CDCl$_3$)
1H and 13C Spectra of compound 3k (CDCl$_3$)
1H and 13C Spectra of compound 3l (CDCl$_3$)
1H and 13C Spectra of compound 3m (CDCl$_3$)
1H and 13C Spectra of compound 3n (CDCl$_3$)
1H and 13C Spectra of compound 3o (CDCl$_3$)
1H and 13C Spectra of compound 3p (CDCl$_3$)
1H and 13C Spectra of compound 3q (CDCl₃)
1H and 13C and 19F Spectra of compound 3r (CDCl$_3$)
1H and 13C Spectra of compound 3s (CDCl$_3$)
1H and 13C Spectra of compound 3t (CDCl$_3$)
1H and 13C Spectra of compound 3u (CDCl$_3$)
1H and 13C Spectra of compound 3v (CDCl$_3$)
1H and 13C Spectra of compound 3w (CDCl$_3$)
^1H and ^{13}C Spectra of compound 3x (CDCl$_3$)
1H and 13C Spectra of compound 3y (CDCl$_3$)
1H and 13C Spectra of compound 3z (CDCl$_3$)
1H and 13C Spectra of compound 3aa (CDCl$_3$)
1H and 13C Spectra of compound 3ab (CDCl$_3$)