A Formal [4+2] Cycloaddition of Sulfur-Containing Alkylidene Heterocycles with Allenic Compounds

Vojtěch Dočekal^[a], Bedřich Formánek^[a], Ivana Císařová^{<math>[b]} and Jan Veselý^{*[a]}</sup></sup></sup></sup>

^{*a*} Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2

^b Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2 § These surfaces contributed a smaller to this much

 ${}^{\$}$ These authors contributed equally to this work.

Electronic Supplementary Information

Table of Contents

Table of Contents	
General	S3
Optimization of reaction conditions for cycloaddition reaction	S4
Starting material	
Preparation of allenoates and selected alkylidenes	
Preparation of benzothiophen-2-ones	
Preparation of 3-alkylidenebenzothiophenones	S11
General procedure for formal cycloaddition reaction	S18
Further transformations	S29
Crystallographic data for 3a and 6b	S32
NMR spectra	S35
Chiral HPLC	S90

General

Chemicals and solvents were either purchased puriss p.A. from commercial suppliers or purified by standard techniques. For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid (AMC) or vaniline followed by heating. The solution of AMC was prepared from phosphomolybdic acid (25 g), $Ce(SO_4)_2 \cdot H_2O(10 g)$, conc. H_2SO_4 (60 ml) and H₂O (940 ml). The solution of vanilline was prepared from vanilline (15 g) in ethanol (250 ml) and conc. sulfuric acid (2.5 ml). Column chromatography was performed using silica gel Fluka (40-63 µm). ¹H, ¹⁹F and ¹³C NMR spectra were recorded with Bruker AVANCE III 400. Chemical shifts for protons are given in δ and are referenced to residual protium in the NMR solvent (Chloroform-d: $\delta = 7.26$ ppm). Chemical shifts for carbon are referenced to the carbon in NMR solvent (Chloroform-d: $\delta = 77.0$ ppm). The coupling constants J are given in Hz. Chiral HPLC was carried out using a LC20AD Shimadzu liquid chromatograph with SPD-M20A diode array detector with columns Daicel Chiralpak® IA, Daicel Chiralpak® IB, Daicel Chiralpak® AD, Daicel Chiralpak® ODH. Optical rotations were measured on AU-Tomatica polarimeter, Autopol III. Specific optical rotations are given in concentrations c [g/100 ml]. IR DRIFT spectras were recorded with Nicolet AVATAR 370 FT-IR in cm⁻¹. High-resolution mass spectras were recorded with a LCQ Fleet spectrometer.

Optimization of reaction conditions for cycloaddition reaction

Table S1.	Catalyst	screening.

~ 1	∼Ph _CO₂l	^{Bn} Catalyst (20 mol%)		Ph	
	≡o	CHCl ₃ , (r.	0.2 mol/l	-0 ⁻⁰ -0 ²		
1a 1.0 eq	2a . 1.2 eq		Ũ	3a	4a	
Entry	Catalyst	Time (h)	Convers. ^[a] (%)	3a/4a ^[a]	Yield ^[b] (%)	ee (%) ^[c]
1	none	120	0	n.d.	n.d.	n.d.
2	2,4-DNBA	120	0	n.d.	n.d.	n.d.
3	DABCO	15	100	7:1	98	-
4	PPh_3	120	70	n.d.	n.d. ^[d]	n.d.
5	β-ICD	15	100	>20:1	94	48
6	QN	15 ^e	84	>20:1	49	-64
7	QD	15	100	20:1	83	73
8 ^[e]	QD	40	100	20:1	70	71
9	CD	48	89	20:1	67	-16
10	CN	65	76	15:1	72	39
11	TMS-QD	15	100	>20:1	91	66
12	Bz-QD	18	55	20:1	52	52
13	(DHQD) ₂ AQN	15 ^e	100	>20:1	83	63
14	(DHQ) ₂ AQN	15	100	20:1	83	-53
15	(DHQD) ₂ Phal	65	73	8:1	47	64
16	(DHQ) ₂ Phal	48	70	20:1	39	-5
17	(DHQD) ₂ Pyr	15	90	11:1	43	71
18	(DHQ) ₂ Pyr	15	100	20:1	86	-68
19	C1	120	0	n.d.	n.d.	n.d.
20	C2	120	0	n.d.	n.d.	n.d.
21	(<i>R</i> , <i>R</i>)-TUC	120	0	n.d.	n.d.	n.d.

[a] Determined by ¹H NMR of crude reaction mixture. [b] Isolated yield after column chromatography. [c] Determined by HPLC with IB chiral column. [d] Different product was observed. [e] Reaction was performed at -20 °C. 2,4-DNBA = 2,4-dinitrobenzoic acid

Figure S1. Structures of catalysts screened.

MeO .OMe N

(DHQD)₂PYR

) O

Ń

TMSO

(*R*,*R*)-TUC

TMS-QD

MeO

́ОН CD

QМе

OMe

Ń

BzO`

Bz-QD

ŅМе

(DHQ)₂PYR

(DHQ)₂PHAL

(DHQ)₂AQN

N

0

MeO

Ν

н

OMe

ŅМе

	S^{Ph} + CO_2Br	QD (20 Solvent	$\frac{0 \text{ mol}\%)}{0.2 \text{ mol}/1} \qquad \qquad$	CO ₂ Bi	n +	CO ₂ Bn
1 a 1.0	a 2a eq. 1.2 eq.		Ũ	3a	4a	
Entry	Solvent	Time (h)	Convers. ^[a] (%)	3a/4a ^[a]	Yield ^[b] (%)	ee (%) ^[c]
1	CHCl ₃	15	100	20:1	83	73
2	DCM	15	100	19:1	86	78
3	DCE	15	90	17:1	73	82
4	MTBE	15	95	19:1	98 ^[d]	74
5	THF	15	100	19:1	90	78
6	EtOAc	15	100	12:1	93	83
7	MeCN	15	91	12:1	72	85
8	acetone	15	100	9:1	80	86
9	benzene	15	100	20:1	93	79
10	toluene	40	90	>20:1	95	75
11	DMF	15	100	4:1	62	86
12	DMSO	15	100	5:1	41	73
13	MeOH	15	100	>20:1	82 ^[d]	89
14	EtOH	15	100	>20:1	75 ^[d]	83
15	2,2,2-trifluoroethanol	120	50	n.d.	n.d.	n.d.
16	<i>i</i> -PrOH	15	100	>20:1	77 ^[d]	67
17	PrOH	15	100	>20:1	79 ^[d]	80
18	Diethylene glycol	15	95	7:1	71 ^[d]	85

Table S2. Solvent screening.

[a] Determined by ¹H NMR of crude reaction mixture. [b] Isolated yield after column chromatography. [c] Determined by HPLC with IB chiral column. [d] Product precipitated from reaction mixture.

	\sim^{Ph} =0 +	Bn QD (20 Additive (MeOH, (r.1	mol%) 10 mol%) 0.2 mol/l t. S	CO ₂ B	n +	CO ₂ Bn
1a 1.0 eq.	2a 1.2 ec	ą .		3a	4a	
Entry	Additive	Time (h)	Convers. ^[a] (%)	3a/4a ^[a]	Yield ^[b] (%)	ee (%) ^[c]
1	none	15	100	>20:1	82 ^[d]	89
2	PhCOOH	15	90	>20:1	77 ^[d]	89
3	<i>p</i> -TsOH	15	92	>20:1	78 ^[d]	84
4	2,4-DNBA	15	97	>20:1	92 ^[d]	90
5	PhOH	15	100	17:1	75	85
6	4-NO ₂ PhOH	15	95	19:1	89 ^[d]	89.5
7	(S)-CSA	15	94	>20:1	77 ^[d]	84
8	(<i>R</i>)-BNPPA	15	100	19:1	71 ^[d]	88
9 ^[e]	2,4-DNBA	20	87	>20:1	88	74

Table S3. Additive screening.

[a] Determined by ¹H NMR of crude reaction mixture. [b] Isolated yield after column chromtography. [c] Determined by HPLC with IB chiral column. [d] Product precipitated from reaction mixture. [e] Reaction was performed in DCM. (S)-CSA = (1S)-(+)-Camphorsulfonic acid, (R)-BNPPA = (R)-(-)-1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate

Table S4. Temperature screening.

	^{~~Ph} ≻=0 ⁺	OD (20 2,4-DNBA MeOH, Temp	F (10 mol%) (10 mol%) 0.2 mol/l erature	CO ₂ Br	h +	CO ₂ Bn
1a 1.0 ec	2a q. 1.2 eq			3a	4a	
Entry	Temperature	Time (h)	Convers. ^[a] (%)	3a/4a ^[a]	Yield ^[b] (%)	ee (%) ^[c]
1	r.t.	15	100	>20:1	92 ^[d]	90
2	0 °C	72	96	19:1	75 ^[d]	88
3	-20 °C	120	62	8:1	55 ^[d]	85
4	40 °C	5	85	20:1	90 ^[d]	86
5	60 °C	5	85	5:1	56	66

[a] Determined by ¹H NMR of crude reaction mixture. [b] Isolated yield after column chromtography. [c] Determined by HPLC with IB chiral column. [d] Product precipitated from reaction mixture.

1a 1.0 etc	Ph → CO ₂ E → CO ₂ E	Gn QD (20 2,4-DNBA Me Conce	D mol%) (10 mol%) eOH, ntration, r.t.	CO ₂ Bn	+ Ph S C 4a	CO ₂ Bn
Entry	Concentration	Time (h)	Convers. ^[a] (%)	3a/4a ^[a]	Yield ^[b] (%)	ee (%) ^[c]
1	0.2 mol/l	15	100	>20:1	92 ^[d]	90
2	0.1 mol/l	15	92	20:1	78 ^[d]	89
3	0.05 mol/l	48	87	10:1	69	90
4	0.4 mol/l	15	100	>20:1	86 ^[d]	86
5	0.8 mol/l	15	100	20:1	93 ^[d]	88

Table S5. Concentration screening.

[a] Determined by ¹H NMR of crude reaction mixture. [b] Isolated yield after column chromtography. [c] Determined by HPLC with IB chiral column. [d] Product precipitated from reaction mixture.

S S	o + CC	2,4-DN 2,4-DN MeQ	0 (A mol%) NBA (B mol%) OH, 0.2 mol/l r.t.	Ph S	CO ₂ Bn +	Ph	CO₂Bn
1a 1.0 eq.	2a 1.2 e	ı əq.		3a		4a	
Entry	Α	В	Time (h)	Convers. ^[a] (%)	3a/4a ^[a]	Yield ^[b] (%)	ee (%) ^[c]
1	20	10	15	97	>20:1	92 ^[d]	90
2	20	20	48	89	>20:1	75 ^[d]	89
3	20	50	120	0	n.d.	n.d.	n.d.
4	20	100	120	100	n.d.	n.d.	n.d.
5	10	5	40	98	>20:1	90 ^[d]	84
6	5	2.5	72	92	>20:1	75 ^[d]	86
7	5	0	15	100	>20:1	72 ^[d]	82

Table S6. Catalyst and additive loading screening.

[a] Determined by ¹H NMR of crude reaction mixture. [b] Isolated yield after column chromtography. [c] Determined by HPLC with IB chiral column. [d] Product precipitated from reaction mixture.

Starting material

Preparation of allenoates and selected alkylidenes

Allenoates **2a** and **2b** were prepared according to previously reported procedures.¹ Corresponding allenic ketone **2c** was prepared according to previously reported procedure.² (*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-one (**5a**) was prepared by Wittig reaction from thioisatine.³ Thiazolone alkylidene **5b** was prepared according to previously reported procedure.⁴ Thiazolone alkylidene **5c** was prepared according to previously reported procedure.⁵

Preparation of benzothiophen-2-ones

To a stirred solution of 2,2,6,6-tetramethylpiperidine (0.52 ml, 3.05 mmol, 1.3 eq.) in anhydrous THF (3 ml) was n-BuLi (1.13 ml, 2.81 mmol, 1.2 eq., 2.5M solution in hexanes) added dropwise (during 3 minutes) at -78 °C under argon atmosphere. Reaction was stirred for 15 min at the same temperature. Light yellow solution was slowly cannulated to a stirred solution of corresponding thiophene 10 (2.34 mmol, 1.0 eq.) in anhydrous THF (7 ml) under Ar atmosphere. Resulting reaction mixture was stirred at the same temperature for 1.5 h. Then triisopropyl borate (0.87 ml, 3.74 mmol, 1.6 eq.) was added dropwise. Reaction mixture was stirred for 30 min at -78 °C, then 1 h at room temperature. Reaction was guenched with HCl (10 ml, 1M). Resulting suspension was stirred for 15 min at room temperature. Mixture was diluted with Et₂O (30 ml). Organic phase was separated and water phase was washed with Et₂O $(2 \times 30 \text{ ml})$. Collected organic phases were washed with solution of NaOH $(2 \times 25 \text{ ml}, 1\text{M})$. Collected alkaline solutions were neutralized and acidified to pH ~ 2 with hydrochloric acid (36%). Resulting suspension was washed with Et₂O (3×30 ml). Collected org. phases were extracted with brine $(1 \times 20 \text{ ml})$ and dried under anhydrous MgSO₄. Mixture was filtered and solvents were evaporated in vacuo to give crude boronic acid, which was used directly in next step.

Following the reported procedure,⁶ to a solution of crude boronic acid (2.3 mmol) in EtOH (4.0 ml) was H_2O_2 (30%, 1.0 eq.) added dropwise. Reaction was stirred overnight at room temperature. Then solvent was carefully evaporated on rotavap. Residue was suspended in water (20 ml). This mixture was washed with EtOAc (3 × 30 ml). Collected organic phases were washed with brine (1 × 30 ml) and dried under anhydrous MgSO₄. Mixture was filtered and solvents were evaporated *in vacuo*. Crude product was purified by flash chromatography (Hex/EtOAc) affording desired products.

¹ a) J.Bang, H. Kim, J. Kim, and Ch. Yu, *Org. Lett.*, 2015, **17**, 1573; b) L. Rout and A. M. Harned, *Chem. Eur. J.*, 2009, **15**, 12926.

² L. Yang, D. Mario and B. Marco, *Synthesis*, 2018, **50**, 3187.

³ Y. Takeuchi, T. Choshi, H. Tomozane, H. Yoshida, M.Yamato, Chem. Pharm. Bull., 1990, 38, 2265.

⁴ L. Lin, Y. Yang, M. Wang, L. Lai, Y. Guoa and R. Wang, *Chem. Commun.*, 2015, **51**, 8134.

⁵ I. Arenal, M. Bernabé, O. Cuevas, E. Fernández Alvarez, *Tetrahedron*, 1983, **39**, 1387.

⁶ P. S.Banerjee, E. S.Zuniga, I. Ojima and I. S.Carrico, *Bioorg. Med. Chem. Lett.*, 2011, 21, 4985.

Benzo[b]thiophen-2(3H)-one (11a)

The title compound was synthesized according to general procedure. Known compound,⁶ light brown solid, yield = 95 % (for last step – commercially available boronic acid). ¹H NMR (400 MHz, CDCl₃) δ = 7.38 – 7.15 (m, 4H), 3.96 (s, 2H) ppm.

5-Chlorobenzo[*b*]thiophen-2(3*H*)-one (11b)

CI The title compound was synthesized according to general procedure. White solid, yield = 71 % (over four steps); **m.p.** = 112.7 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): δ = 7.33 – 7.26 (m, 3H), 3.97 (s, 2H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): δ = 201.7, 135.4, 133.6, 132.1, 128.6, 125.1, 124.0, 47.2 ppm; **IR** (KBr): v = 3428, 3117, 3079, 3022, 2941, 2908, 2095, 2029, 1891, 1853, 1814, 1760, 1700, 1688, 1628, 1592, 1559, 1461, 1443, 1416, 1974, 1275, 1228, 1195, 1132, 1087, 1021, 1006, 911 cm⁻¹, **HRMS** (EI) *m/z*: calcd. for C₈H₅OSC1 [M]: 183.9750, found: 183.9749.

5-Nitrobenzo[*b*]thiophen-2(3*H*)-one (11c)

C₂N S The title compound was synthesized according to general procedure. Light orange solid; yield = 38 % (over four steps); **m.p.** = 125.4 °C; **¹H NMR** (400 MHz, Chloroform-*d*): δ = 8.33 – 8.13 (m, 2H), 7.53 (d, *J* = 8.4 Hz, 1H), 4.10 (s, 2H) ppm, ¹³C NMR (101 MHz, Chloroform-*d*): δ = 199.8, 146.4, 145.9, 133.2, 123.8, 123.4, 119.8, 46.9. ppm; **IR** (KBr): *v* = 3422, 3094, 3073, 3043, 3025, 2989, 2938, 2911, 2848, 2830, 2738, 2627, 2531, 2026, 1927, 1862, 1718, 1688, 1637, 1598, 1574, 1527, 1512, 1464, 1422, 1341, 1311, 1272, 1228, 1198, 1141, 1078, 1039, 1018, 934, 920, 836, 812 cm⁻¹; **HRMS** (EI) *m/z*: calcd. for C₈H₅NO₃S [M]: 194.9990, found: 194.9993.

5-Methylbenzo[b]thiophen-2(3H)-one (11d)

The title compound was synthesized according to general procedure. Known compound,⁷ white solid, yield 76% (over four steps), **m.p.** = 75.6 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): δ = 7.24-7.20 (m, 2H), 7.17 – 7.06 (m, 2H), 3.93 (s, 2H), 2.34 (s, 3H) ppm.

5-Bromobenzo[*b*]thiophen-2(3*H*)-one (11e)

Br

The title compound was synthesized according to general procedure.

Light yellow solid, yield = 69 % (over four steps), **m.p**. = 125.4 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): δ = 7.52 – 7.37 (m, 2H), 7.26 – 7.20 (m, 1H), 3.98 (s, 2H) ppm, ¹³**C NMR** (101 MHz, Chloroform-*d*): δ = 201.5, 136.0, 133.9, 131.4, 127.9, 124.3, 119.7, 47.1 ppm; **IR** (KBr): v = 3419, 3411, 3114, 3073, 2938, 2902, 2152, 2110, 2077, 2038, 1903, 1814, 1715, 1649, 1622, 1556, 1497, 1461, 1440, 1410, 1374, 1281, 1261, 1228, 1195, 1141, 1096, 1018, 824 cm⁻¹; **HRMS** (EI) *m/z*: calcd. for C₈H₅OSBr [M]:, found: 227.9244.

6-Bromobenzo[b]thiophen-2(3H)-one (11f)

The title compound was synthesized according to general procedure.

Br S White solid, yield = 65 % (over four steps), **m.p.** = 90.0 °C, ¹H NMR (400 MHz, Chloroform-*d*): δ =7.48 (d, *J* = 1.9 Hz, 1H), 7.34 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.15 (dt, *J* = 8.1, 1.2 Hz, 1H), 3.91 (s, 2H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): δ = 201.6, 139.0, 130.8, 129.2, 125.9, 125.7, 121.8, 46.7 ppm; **IR** (KBr): *v* = 3390, 3073, 3061, 2938, 2914, 1885, 1844, 1709, 1664, 1598, 1559, 1518, 1461, 1392, 1362, 1305, 1257, 125.9, 125.7, 121.8, 1461, 1392, 1362, 1305, 1257, 125.9, 125.7, 121.8, 1461, 1392, 1362, 1305, 1257, 125.9, 125.7, 125.9, 125.9, 125.9, 125.9, 125.9, 1559, 1518, 1461, 1392, 1362, 1305, 1257, 125.9,

⁷ V. Valenta, J. Jílek, J. Pomykáček, A. Dlabač, M. Valchář, J. Metyš and M. Protiva *Collect. Czech. Chem. Commun.*, 1979, **44**, 2677.

1237, 1189, 1135, 1108, 1090, 1063, 1024, 1003 cm⁻¹; **HRMS** (EI) *m/z*: calcd. for C₈H₅OSBr [M]: 227.9244, found: 227.9248.

7-Bromobenzo[b]thiophen-2(3H)-one (11g)

The title compound was synthesized according to general procedure. White solid, yield = 71 % (over four steps), m.p. = 99.7 °C, ¹H NMR

(400 MHz, Chloroform-*d*): $\delta = 7.44$ (dg, J = 8.1, 1.0 Hz, 1H), 7.22 (dg, J = 7.6, 1.2 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 4.10 (s, 2H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): *δ* = 200.4, 139.5, 133.6, 131.4, 127.3, 123.1, 116.5, 49.3 ppm; **IR** (KBr): *v* = 3405, 3396, 3114, 3061, 3028, 2926, 2902, 2086, 2044, 1945, 1888, 1847, 1808, 1790, 1721, 1712, 1676, 1589, 1553, 1455, 1419, 1380, 1368, 1311, 1269, 1183, 1162, 1141, 1111, 1066, 1024, 979, 887, 770 cm⁻¹; **HRMS** (EI) *m/z*: calcd. for C₈H₅OSBr [M]: 227.9244, found: 227.9247.

4-Bromobenzo[*b*]thiophen-2(3*H*)-one (11h)

The title compound was synthesized according to general procedure. White solid, yield = 83 % (over four steps), m.p. = 66.7 °C, ¹H NMR (400 MHz, Chloroform-d) δ = 7.38 (dd, J = 8.1, 1.1 Hz, 1H), 7.28 (dd, J = 7.8, 1.0 Hz, 1H), 7.18 (tt, J = 7.9, 1.0 Hz, 1H), 3.97 (s, 2H) ppm, ¹³C NMR (101 MHz, Chloroform-d) δ = 199.9, 138.2, 132.7, 129.7, 129.5, 121.8, 119.8, 49.4

ppm; **IR** (KBr): *v* = 3415, 3408, 3079, 2926, 2896, 1716, 1670, 1586, 1574, 1556, 1452, 1431, 1377, 1302, 1248, 1219, 1177, 1069, 1027 cm⁻¹, **HRMS** (EI) *m/z*: calcd. for C₈H₅OSBr [M]: 227.9244, found: 227.9248.

Preparation of 3-alkylidenebenzothiophenones

Following the reported procedure⁸ in a round-bottom flask benzothiophen-2-one **11** (2.0 mmol, 1 eq.) and corresponding aldehyde (2.1 mmol, 1.05 eq.) was dissolved in 96% EtOH (3.5 ml, 0.55M), then piperidine (0.02 ml, 0.2 mmol, 0.1 eq.) was added. Reaction mixture was left to stirr overnight at room temperature. After consumption of benzothiophen-2-one (monitored by TLC) the reaction mixture was evaporated and purified by flash column chromatography on silicagel (Hex/EtOAc or Hex/toluene mixtures) or precipitated product was filtered over sintered funnel, washed with small amount of 96% EtOH and recrystallized from boiling 96 % EtOH affording desired products.

3-Benzylidenebenzo[*b*]thiophen-2(3*H*)-one (1a)

The title compound was synthesized according to general procedure.

Mixture of E/Z isomers (1a(E)/1a(Z) = 5/1), yellow semi-solid, yield = 78 %, pure E isomer 1a(E), yield = 12 %; ¹H NMR (400 MHz, Chloroform-d): [isomer 1a(E) - H'; isomer 1a(Z) - H]: δ 7.97 - 7.95 (m, 2H), 7.81 (s, 1H'), 7.59 – 7.56 (m, 3H⁺+2H, overlapped), 7.49 – 7.43 (m, 3H⁺+3H, overlapped), 7.36 - 7.34 (m, 1H⁴), 7.33 - 7.32 (m, 2H), 7.26 (t, J = 7.7 Hz, 1H⁴+1H, overlapped), 7.02 – 6.98 (m, 1H^c) ppm; ¹³C NMR (101 MHz, CDCl₃): [isomer

1a(E) - C'; isomer 1a(Z) - C]: $\delta = \delta$ 194.6 (1C'), 192.2 (1C), 138.7 (1C), 138.4 (1C'), 135.9

⁸ R. A. Conley and N. D. Heindel, J. Org. Chem., 1976, 41, 3743.

(1C[•]), 134.9 (1C), 134.3 (1C[•]), 133.7 (1C[•]), 133.2 (1C), 133.0 (1C), 131.7 (1C), 131.6 (2C), 131.0 (1C), 130.1 (1C[•]), 129.9 (1C[•]), 129.8 (1C[•]), 129.3 (1C), 128.8 (2C[•]), 128.8 (2C[•]), 128.1 (2C), 125.8 (1C), 125.5 (1C[•]), 124.2 (1C[•]), 123.5 (1C[•]), 123.2 (1C), 121.0 (1C) ppm; **IR** (KBr): v = 3067, 3019, 2657, 2110, 1951, 1918, 1888, 1811, 1778, 1754, 1688, 1667, 1604, 1497, 1443, 1368, 1275, 1222, 1210, 1180, 1075, 1054, 1024, 1003, 937, 905, 878, 845, 800, 764, 726, 698, 606, 564 cm⁻¹;**HRMS**(ESI) m/z calcd for C₁₀H₁₅NaOS⁺ [M+Na]⁺ = 261.0345, found = 261.0346.

3-Benzylidene-5-chlorobenzo[*b*]thiophen-2(3*H*)-one (1b)

The title compound was synthesized according to general procedure. Inseparable mixture of E/Z isomers (**1b**(E)/**1b**(Z) = 2.2/1), yellow solid, yield = 84 %; **m.p.** = 71.9 °C; **¹H NMR** (400 MHz, Chloroform-d): [isomer **1b**(E) – H'; isomer **1b**(Z) – H]: δ = 8.07 – 7.94 (m, 2H), 7.86 (d, J = 2.6 Hz, 1H'), 7.61 – 7.40 (m, 6H'+ 5H, *overlapped*), 7.33 – 7.20 (m, 2H + 2H', *overlapped*) ppm; ¹³C NMR (101 MHz, Chloroform-d): [isomer

1b(*E*) – C'; isomer **1b**(*Z*) – C]: $\delta = 193.8$ (1C'), 192.1 (1C, from 2D experiments), 140.2 (2C' + 1C, overlapped), 134.2 (1C' + 1C), overlapped), 133.7 (1C') 133.1 (1C), 132.9, (1C), 131.9 (1C' + 1C, overlapped), 131.6 (1C'), 131.5 (1C), 131.4 (1C'), 130.4 (2C), 129.9 (2C), 129.2 (2C'), 129.1 (1C), 128.8 (2C'), 128.3 (1C'), 124.4 (1C), 124.2 (1C'), 124.2 (1C), 121.2 (1C') ppm; **IR** (KBr): v = 3363, 3058, 3025, 2995, 1972, 1879, 1694, 1676, 1604, 1583, 1556, 1494, 1446, 1419, 1377, 1326, 1287, 1260, 1242, 1198, 1168, 1090, 1078, 1051, 1030, 1018 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₁₅H₉FClNaOS [M+Na]⁺: 294.9954, found: 294.9955.

3-Benzylidene-5-nitrobenzo[*b*]thiophen-2(3*H*)-one (1c)

The title compound was synthesized according to general procedure. Inseparable mixture of E/Z isomers (1c(E)/1c(Z) = 2.2/1), yellow solid, yield = 63 %; **m.p.** = 145.9 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): [isomer 1c(E) - H'; isomer 1c(Z) - H]: $\delta = 8.52$ (d, J = 2.3 Hz, 1H'), 8.46 (d, J = 2.2 Hz, 1H), 8.21 (dd, J = 8.6, 2.2 Hz, 1H), 8.15 (dd, J = 8.6, 2.3 Hz, 1H'), 8.08 – 8.03 (m, 2H, *overlapped*), 8.01 (s, 1H'), 7.79 (s, 1H),

7.63 – 7.44 (m, 6H' + 4H, *overlapped*) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): [isomer **1**c(*E*) – C'; isomer **1**c(*Z*) – C]: δ = 192.3 (1C'), 190.0 (1C, *from 2D experiments*), 146.0 (1C), 140.0 (1C'), 142.9 (1C), 142.5 (2C', *overlapped*), 134.2 (1C), 133.0 (1C'), 132.4 (1C' + 2C, *overlapped*), 131.9 (1C'), 131.2 (2C), 130.8 (1C'), 129.3 (2C'), 129.0 (2C'), 128.9 (2C), 128.5 (1C), 124.4 (1C'), 123.7 (1C' + 1C, *overlapped*), 123.6 (1C), 118.8 (1C'), 115.9 (1C) ppm; **IR** (KBr): v = 3405, 3108, 3085, 3058, 2935, 2914, 2851, 1969, 1915, 1793, 1715, 1679, 1604, 1574, 1521, 1491, 1449, 1338, 1263, 1242, 1263, 1242, 1189, 1171, 1138, 1105, 1084, 1060, 1036, 1018, 1000 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₁₅H₉NNaO₃S [M+Na]⁺: 306.0196, found: 306.0195.

3-Benzylidene-5-methylbenzo[*b*]thiophen-2(3*H*)-one (1d)

The title compound was synthesized according to general procedure. Inseparable mixture of E/Z isomers (1d(E)/1d(Z) = 2.8/1), orange oil, yield = 74 %; ¹H-NMR (400 MHz, Chloroform-*d*): [isomer 1d(E) - H'; isomer 1d(Z) - H]: $\delta = 7.99 - 7.94$ (m, 2H), 7.78 (s, 1H'), 7.64 - 7.38 (m, 7H + 7H', *overlapped*), 7.23 (t, J = 8.4 Hz, 1H'), 7.15 (ddd, J = 7.9, 1.6, 0.7 Hz, 1H), 7.09 (ddd, J = 8.0, 1.8, 0.9 Hz, 1H'), 2.41 (s, 3H), 2.16 (s, 3H')

ppm; ¹³C NMR (101 MHz, Chloroform-*d*) [isomer 1d(E) - C'; isomer 1d(Z) - C: $\delta = 195.2$ (1C'), 192.7 (1C, from 2D experiments), 138.3 (1C), 138.1 (2C'), 135.3 (2C), 134.4 (1C'), 133.9 (1C), 133.3 (1C'), 132.5 (1C'), 131.6 (2C), 130.9 (2C' + 1C, overlapped), 130.3 (2C),

130.1 (1C), 129.8 (2C'), 129.6 (1C), 128.9 (3C'), 128.2 (1C), 125.0 (1C'), 123.2 (1C'), 122.9 (1C), 121.7 (1C), 21.4 (1C), 21.3 (1C') ppm; **IR** (KBr): v = 3551, 3258, 3064, 2863, 2591, 1820, 1658, 1604, 1248, 1210, 1180, 1156, 10877, 1066, 1033, 1000, 943 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for C₁₆H₁₃OS [M+H]⁺: 253.0680, found: 253.0682.

3-Benzylidene-5-bromobenzo[*b*]thiophen-2(3*H*)-one (1e)

Br S O

The title compound was synthesized according to general procedure. Inseparable mixture of E/Z isomers (1e(E)/1e(Z) = 2.0/1); yellow solid; yield = 82 %; **m.p.** = 101.6 °C; ¹H NMR (400 MHz, Chloroform-*d*): [isomer 1e(E) - H'; isomer 1e(Z) - H]: $\delta = 8.01 - 7.94$ (m, 2H), 7.86 (s, 1H'), 7.73 (d, J = 2.0 Hz, 1H'), 7.71 (s, 1H), 7.60 - 7.33 (m, 6H' + 5H, *overlapped*), 7.25 - 7.15 (m, 1H' + 1H, *overlapped*) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): [isomer 1e(E) - C'; isomer 1e(Z) - C]: δ

=193.6 (1C'), 192.3 (1C, only from 2D), 140.2 (2C' + 1C, overlapped), 134.8 (1C'+ 1C, overlapped), 133.6 (1C'), 132.7 (1C), 132.6 (1C'), 132.0 (1C'), 131.9 (1C), 131.8 (1C'), 131.6 (1C), 130.5 (2C), 129.0 (2C), 128.9 (2C' + 1C, overlapped), 128.3 (2C'), 127.1 (1C'), 124.7 (2C'), 124.5 (1C), 124.1 (1C'), 119.6 (1C), 119.2 (1C') ppm; **IR** (KBr): v = 3440, 3366, 3082, 3064, 3049, 3022, 3001, 2929, 1963, 1906, 1891, 1688, 1601, 1574, 1553, 1491, 1449, 1440, 1416, 1353, 1314, 1281, 1263, 1242, 1168, 1078, 1048, 1015 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₁₅H₉BrNaOS [M+Na]⁺: 338.9445, found: 338.9450.

3-Benzylidene-6-bromobenzo[b]thiophen-2(3H)-one (1f)

The title compound was synthesized according to general procedure. Inseparable mixture of *E*/*Z* isomers (**1f**(*E*)/**1f**(*Z*) = 5.8/1), yellow solid, yield = 94 %; **m.p.** = 101.6 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): [isomer **1f**(*E*) – H'; isomer **1f**(*Z*) – H]: δ = 8.00 – 7.89 (m, 2H), 7.84 (s, 1H'), 7.58 (s, 1H) 7.57 – 7.41 (m, 7H' + 5H, overlapped), 7.38 (dd, *J* = 8.4, 1.8 Hz, 1H) 7.12 (dd, *J* = 8.5, 2.0 Hz, 1H') ppm; ¹³C **NMR** (101 MHz, Chloroform-*d*): [isomer **1f**(*E*) – C'; isomer **1f**(*Z*) – C]: δ = 193.49, 139.47,

139.2, 137.8, 134.0, 132.8, 131.7, 131.4, 130.1, 129.0, 128.9, 128.8, 128.7, 128.2, 126.2, 125.9, 125.2, 123.6, 122.1 ppm; **IR** (KBr): v = 3333, 3079, 3058, 3043, 3022, 2932, 1975, 1957, 1888, 1811, 1700, 1676, 1598, 1494, 1464, 1446, 1401, 1317, 1242, 1198, 1171, 1138, 1093, 1054, 1030, 1009, 997 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for C₁₅H₉BrNaOS [M+Na]⁺: 338.9446, found: 338.9445.

3-Benzylidene-7-bromobenzo[*b*]thiophen-2(3*H*)-one (1g)

The title compound was synthesized according to general procedure.

Inseparable mixture of E/Z isomers (1g(E)/1g(Z) = 4.5/1), yellow solid, yield = 61 %; m.p. = 102.5 °C; ¹H-NMR (400 MHz, Chloroform-*d*): [isomer 1g(E) - H'; isomer 1g(Z) - H]: $\delta = 8.03 - 7.96$ (m, 2H), 7.86 (s, 1H'), 7.62 - 7.39 (m, 7H' + 6H, *overlapped*), 7.19 (t, J = 7.9 Hz, 1H), 6.92 (t, J = 8.0 Hz, 1H') ppm; ¹³C-NMR (101 MHz, Chloroform-*d*): [isomer 1g(E) - C'; isomer 1g(Z) - C]: $\delta = 192.9$ (1C'), 190.6 (1C, from 2D experiments), 140.7 (2C), 140.4 (2C'), 138.3 (1C' + 2C, overlapped), 134.7 (1C'), 133.8 (1C), 132.6

(1C'), 131.9 (2C), 131.8 (1C'), 131.5 (1C), 130.1 (2C), 128.9 (4C'), 128.3 (2C), 127.0 (1C), 126.7 (1C'), 122.5 (1C'), 119.3 (1C), 117.3 (1C') ppm; **IR** (KBr): v = 3082, 3052, 3028, 2956, 2923, 2893, 2872, 1694, 1646, 1604, 1580, 1530, 1500, 1458, 1410, 1377, 1356, 1344, 1305, 1263, 1228, 1195, 1171, 1138, 1108, 1084, 1051, 1024, 982, 964 cm⁻¹;**HRMS**(ESI+) <math>m/z: calcd. for C₁₅H₉BrNaOS [M+Na]⁺: 338.9448, found: 338.9445.

3-Benzylidene-4-bromobenzo[b]thiophen-2(3H)-one

The title compound was not possible isolate in pure form due to instability on silica gel or Al_2O_3 . During purification on silica gel chromatography decomposition of product to starting benzothiophenone was observed.

3-(4-Chlorobenzylidene)benzo[b]thiophen-2(3H)-one (1h)

The title compound was synthesized according to general procedure and purified by crystallization.

Mixture of E/Z isomers (**1h**(E)/**1h**(Z) = 6.5/1), yellow solid, yield = 68 %; **m.p.** = 121 °C; ¹**H NMR** (400 MHz, Chloroform-d): [isomer **1h**(E) – H'; isomer **1h**(Z) – H]: δ = 7.91 (d, J = 8.6 Hz, 2H), 7.71 (s, 1H^c), 7.56 (d, J = 7.3 Hz, 2H), 7.54 (d, J = 8.1 Hz, 1H^c), 7.51 (d, J = 8.6 Hz, 2H^c), 7.44 (d, J = 8.3 Hz, 2H^c), 7.41 – 7.33 (m, 4H+1H^c), 7.28 (t, J = 7.5 Hz, 1H+1H^c), 7.02 (t, J =

7.7 Hz, 1H[•]) ppm; ¹³C NMR (101 MHz, CDCl₃): [isomer **1h**(*E*) – C'; isomer **1h**(*Z*) – C]: $\delta = \delta$ 194.4 (1C[•]), 192.4 (1C), 136.9 (1C), 136.7 (1C[•]), 136.1 (1C[•]), 135.8 (1C[•]), 135.0 (1C), 134.1 (1C[•]), 132.9 (2C), 132.8 (1C), 132.7 (1C[•]), 132.2 (1C), 131.6 (1C), 130.2 (2C[•]), 130.2 (1C[•]), 129.8 (1C[•]), 129.5 (1C), 129.2 (2C[•]), 128.4 (2C), 125.9 (1C), 125.6 (1C[•]), 124.2 (1C[•]), 123.6 (1C[•]), 123.2 (1C), 121.0 (1C) (*one qC is missing*) ppm; **IR** (KBr): v = 3064, 1688, 1607, 1589, 1491, 1404, 1278, 1171, 1156, 1096, 1072, 1054, 1030, 1015, 920, 830 cm⁻¹; **HRMS** (ESI) *m*/*z*: calcd for C₁₅H₉ClNaOS⁺ [M+Na]⁺ = 294.9955, found = 294.9952.

4-((2-Oxobenzo[b]thiophen-3(2H)-ylidene)methyl)benzonitrile (1i)

The title compound was synthesized according to general procedure and purified by crystallization.

Mixture of *E*/*Z* isomers (1i(E)/1i(Z) = 25/1) – slow isomerisation in CDCl₃ solution occurred, yellow solid, yield = 46 %; **m.p.** = 163 °C; ¹H NMR (400 MHz, Chloroform-*d*): [isomer 1i(E) - H'; isomer 1i(Z) - H]: $\delta = 7.95$ (d, *J* = 8.3 Hz, 2H), 7.78 (d, *J* = 8.3 Hz, 2H'), 7.73 (s, 1H'), 7.70 (d, *J* = 8.3 Hz, 2H, *overlapped*), 7.68 (d, *J* = 8.0 Hz, 2H'), 7.61 (d, *J* = 7.7 Hz, 1H), 7.55 (s, 1H),

7.41 – 7.31 (m, 3H+3H^c, *overlapped*), 7.04 (td, J = 7.8, 1.2 Hz, 1H^c) ppm; ¹³**C** NMR (101 MHz, Chloroform-*d*): [determined only isomer **1i**(E) – C']: δ = 194.0, 139.3, 134.9, 134.9, 132.7 (2C^c), 131.7, 131.3, 130.8, 129.3 (2C), 125.8, 124.4, 123.8, 118.2, 113.1 ppm; **IR** (KBr): v = 3357, 3049, 2956, 2226, 1796, 1682, 1613, 1278, 1162, 1057, 1024, 923, 845 cm⁻¹; **HRMS** (ESI) m/z: calcd for C₁₆H₉NNaOS⁺ [M+Na]⁺ = 286.0297, found = 286.0298.

3-(4-(Trifluoromethyl)benzylidene)benzo[b]thiophen-2(3H)-one (1j)

The title compound was synthesized according to general procedure and purified by crystallization.

Mixture of E/Z isomers (**1**j(E)/**1**j(Z) = 12.5/1), yellow solid, yield = 55 %; **m.p.** = 118 °C; ¹**H NMR** (600 MHz, Chloroform-*d*): [isomer **1**j(E) – H'; isomer **1**j(Z) – H]: δ = 7.96 (d, J = 8.1 Hz, 2H°), 7.76 (s, 1H), 7.73 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.8 Hz, 1H'), 7.57 (s, 1H'), 7.41 – 7.37 (m, 2H), 7.30 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.7 Hz, 1H) ppm.

¹³C NMR (151 MHz, Chloroform-*d*): [isomer 1j(E) - C'; isomer 1j(Z) - C]: $\delta = 194.2$ (1C'), 192.2 (1C), 138.2 (1C'), 136.5 (1C), 136.3 (1C'), 135.8 (1C), 135.8 (1C'), 135.3 (1C), 135.1 (1C'), 133.7 (1C), 132.2 (1C), 131.8 (q, ²J = 33.2 Hz, 1C), 131.4 (q, J = 33.2 Hz, 1C'), 131.2 (1C), 130.5 (1C'), 130.1 (1C), 129.5 (1C'), 129.0 (2C+2C', overlapped), 126.1 (1C), 125.9 (q,

 ${}^{4}J$ = 3.6 Hz, 2C°), 125.8 (1C°), 125.0 (q, *J* = 3.6 Hz, 2C), 124.4 (1C°), 123.8 (q, *J* = 271.8 Hz, 1C), 123.8 (q, *J* = 271.8 Hz, 1C°), 123.7 (1C°), 123.4 (1C), 121.4 (1C) ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*): [isomer **1***j*(*E*) – F′; isomer **1***j*(*Z*) – F]: δ = -62.83 (s, 3F°), -62.95 (s, 3F) ppm; **IR** (KBr): *v* = 3079, 1691, 1610, 1449, 1416, 1326, 1296, 1275, 1171, 1123, 1111, 1066, 1054, 1015, 926 cm⁻¹; **HRMS** (ESI) *m*/*z*: calcd for C₁₆H₉F₃NaOS⁺ [M+Na]⁺ = 329.0218, found = 329.0217.

3-(4-Nitrobenzylidene)benzo[*b*]thiophen-2(3*H*)-one (1k)

The title compound was synthesized according to general procedure and purified by crystallization.

Mixture of *E*/*Z* isomers (1k(E)/1k(Z) = 4/1; orange powder, yield = 88 %; m.p. = 149 °C; ¹H NMR (400 MHz, Chloroform-*d*): [isomer 1k(E) - H'; isomer 1k(Z) - H]: $\delta = 8.33$ (d, J = 8.7 Hz, 2H'), 8.25 (d, J = 8.9 Hz, 2H), 7.96 (d, J = 8.7 Hz, 2H), 7.73 (s, 1H'), 7.72 (d, J = 8.9 Hz, 2H'), 7.60 (d, J = 7.8 Hz, 1H), 7.57 (s, 1H), 7.39 – 7.30 (m, 3H'+ 3H, *overlapped*), 7.02 (t,

J = 7.7 Hz, 1H²) ppm; ¹³C NMR (151 MHz, Chloroform-*d*): [isomer 1k(*E*) – C'; isomer 1k(*Z*) – C]: $\delta = 193.9$ (1C⁴), 192.3 (1C), 148.2 (1C), 148.1 (1C⁴), 141.3 (1C⁴), 139.4 (1C), 136.6 (1C⁴), 135.9 (1C⁴), 135.6 (1C), 134.8 (1C), 134.4 (1C⁴), 134.2 (1C⁴), 131.8 (1C), 131.6 (2C), 130.9 (1C⁴), 130.5 (1C), 129.6 (2C⁴), 129.1 (1C), 126.2 (1C), 125.9 (1C⁴), 124.5 (1C⁴), 124.2 (2C⁴), 123.9 (1C⁴), 123.5 (1C), 123.2 (2C), 121.6 (1C) ppm; IR (KBr): v = 3372, 3106, 2839, 2457, 1691, 1592, 1518, 1341, 1296, 1272, 1171, 1111, 1069, 1054, 1018, 920 cm⁻¹; HRMS (ESI) *m/z*: calcd for C₁₅H₉NNaO₃S⁺ [M+Na]⁺ = 306.0195, found = 306.0197.

3-(4-Methoxybenzylidene)benzo[b]thiophen-2(3H)-one (11)

 O_2N

The title compound was synthesized according to general procedure and purified by column chromatography.

Mixture of E/Z isomers (**11**(E)/**11**(Z) = 2.2/1), red-orange oil, yield = 95 %; **¹H NMR** (400 MHz, Chloroform-d): [isomer **11**(E) – H'; isomer **11**(Z) – H]: δ = 8.11 (d, J = 8.7 Hz, 2H), 7.80 (d, J = 7.0 Hz, 1H'), 7.75 (s, 1H'), 7.60 (d, J = 8.9 Hz, 2H'), 7.55 (d, J = 7.3 Hz, 1H), 7.52 (s, 1H), 7.36 (d, J = 7.8 Hz, 1H'), 7.33 – 7.23 (m, 3H+1H'), 7.04 (td, J = 7.9, 1.3 Hz, 1H'), 6.98 –

6.94 (m, 2H+2H'), 3.89 (s, 3H'), 3.88 (s, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): [isomer **1**1(*E*) – C'; isomer **1**1(*Z*) – C]: δ = 194.8 (1C'), 192.5 (1C), 162.3 (1C), 161.2 (1C'), 139.0 (1C), 138.9 (1C'), 135.7 (1C'), 134.6 (2C), 134.5 (1C), 133.8 (1C), 132.0 (1C'), 131.3 (2C'), 130.5 (1C'), 129.5 (1C'), 129.3 (1C), 128.5 (1C), 126.3 (1C'), 126.2 (1C), 125.7 (1C), 125.4 (1C'), 123.7 (1C'), 123.4 (1C'), 123.0 (1C), 120.5 (1C), 114.2 (2C'), 113.7 (1C), 55.44 (1C), 55.41 (1C') ppm; **IR** (KBr): *v* = 3064, 2836, 1685, 1601, 1512, 1443, 1260, 1180, 1069, 1054, 1030, 1003, 920 cm⁻¹; **HRMS** (ESI) *m/z*: calcd for C₁₆H₁₂NaO₂S⁺ [M+Na]⁺ = 291.0450, found = 291.0450.

3-(4-Methylbenzylidene)benzo[b]thiophen-2(3H)-one (1m)

The title compound was synthesized according to general procedure and purified by column chromatography.

Mixture of E/Z isomers (1m(E)/1m(Z) = 4/1), yellow oil, yield = 80 %; ¹H NMR (400 MHz, Chloroform-*d*): [isomer 1m(E) - H'; isomer 1m(Z) - H]: $\delta = 7.92$ (d, J = 8.2 Hz, 2H), 7.79 (s, 1H⁴), 7.70 (d, J = 8.0 Hz, 1H⁴), 7.58 -7.56 (m, 2H), 7.50 (d, J = 8.0 Hz, 2H⁴), 7.35 (d, J = 7.8 Hz, 1H⁴), 7.34 - 7.30 (m, 2H), 7.27 - 7.24 (m, 3H+3H⁴), 7.02 (td, J = 7.9, 1.2 Hz, 1H⁴), 2.43 (s, 3H⁴),

2.42 (s, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): [isomer 1m(E) - C'; isomer 1m(Z) - C]: $\delta = 194.7$ (1C'), 192.3 (1C), 142.0 (1C), 140.4 (1C'), 139.1 (1C), 138.9 (1C'), 135.8 (1C'),

134.7 (1C), 133.4 (1C), 133.0 (1C[•]), 132.0 (2C), 131.3 (1C[•]), 130.8 (1C), 130.5 (1C), 130.3 (1C[•]), 129.7 (1C[•]), 129.5 (2C[•]), 129.1 (2C[•]), 128.96 (1C), 128.95 (1C), 125.7 (1C), 125.4 (1C[•]), 124.1 (1C[•]), 123.4 (1C[•]), 123.1 (1C), 120.8 (1C), 21.7 (1C), 21.6 (1C[•]) ppm; **IR** (KBr): v = 3058, 2923, 1688, 1601, 1446, 1380, 1275, 1186, 1162, 1066, 1054, 1027, 1003, 923, 815 cm⁻¹. **HRMS** (ESI) *m/z*: calcd for C₁₆H₁₂NaOS⁺ [M+Na]⁺ = 275.0501, found = 275.0501.

3-(4-Bromobenzylidene)benzo[b]thiophen-2(3H)-one (1n)

The title compound was synthesized according to general procedure and purified by crystallization.

E isomer, yellow needles, yield = 69 %; **m.p.** = 146 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): δ = 7.69 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.38 – 7.35 (m, 1H), 7.28 (td, *J* = 7.5, 1.1 Hz, 1H), 7.02 (td, *J* = 7.9, 1.3 Hz, 1H) ppm; ¹³C **NMR** (101 MHz, Chloroform-*d*): δ = 194.4, 136.7, 136.1, 134.1, 132.2 (3C), 130.4 (2C), 130.2, 129.8, 125.6,

124.2, 124.0, 123.6 ppm; **IR** (KBr): v = 3085, 1685, 1604, 1580, 1491, 1395, 1275, 1168, 1108, 1072, 1012, 920, 827 cm⁻¹; **HRMS** (ESI) m/z: calcd for C₁₅H₉BrNaOS⁺ [M+Na]⁺ = 338.9450, found = 338.9441.

3-(3-Bromobenzylidene)benzo[b]thiophen-2(3H)-one (1o)

The title compound was synthesized according to general procedure and purified by crystallization.

E isomer, yellow needles, yield = 48 %; **m.p.** = 98 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): δ = 7.70 (s, 2H, *overlapped*), 7.57 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.38 – 7.32 (m, 2H), 7.29 (td, *J* = 7.6, 1.2 Hz, 1H), 7.03 (td, *J* = 7.9, 1.3 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): δ

= 194.3, 136.5, 136.2, 136.0, 134.7, 132.6, 131.4, 130.5, 130.3, 129.6, 127.2, 125.7, 124.4, 123.6, 123.0 ppm; **IR** (KBr): v = 3061, 1688, 1604, 1556, 1452, 1365, 1269, 1180, 1072, 1054, 1003, 929 cm⁻¹; **HRMS** (ESI) m/z: calcd for C₁₅H₁₀BrOS⁺ [M+H]⁺ = 316.9630, found = 316.9640.

3-(2-Bromobenzylidene)benzo[*b*]thiophen-2(3*H*)-one (1p)

The title compound was synthesized according to general procedure and purified by crystallization.

Mixture of E/Z isomers (**1p**(E)/**1p**(Z) = 6.5/1), yellow solid, yield = 68 %; **m.p.** = 121 °C; ¹**H** NMR (400 MHz, Chloroform-d): [isomer **1p**(E) – H'; isomer **1p**(Z) – H]: δ = 7.82 (d, J = 7.7 Hz, 1H), 7.74 – 7.71 (m, 2H'), 7.68 (s, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.54 – 7.52 (m, 1H'), 7.40 – 7.25 (m, 5H+4H',

overlapped), 7.21 (d, J = 7.8 Hz, 1H[°]), 6.97 (t, J = 7.7 Hz, 1H[°]) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): [isomer **1p**(E) – C'; isomer **1p**(Z) – C]: δ = 194.0 (1C[°]), 191.9 (1C), 136.6 (1C[°]), 136.2 (1C), 136.1 (1C[°]), 135.2 (1C[°]), 134.6 (1C), 133.5 (1C), 133.3 (1C[°]), 132.4 (1C), 131.9 (1C), 131.3 (1C), 130.9 (1C[°]), 130.3 (1C), 130.2 (1C[°]), 129.9 (1C[°]), 129.7 (1C[°]), 129.6 (1C[°]), 127.5 (1C[°]), 126.6 (1C), 126.1 (1C), 125.7 (1C[°]), 124.7 (1C), 124.5 (1C[°]), 123.6 (1C[°]), 123.5 (1C[°]), 123.3 (1C), 121.6 (1C), (*two qC are missing*) ppm; **IR** (KBr): v = 3058, 1691, 1607, 1583, 1446, 1281, 1174, 1135, 1054, 1030, 923, 881 cm⁻¹; **HRMS** (ESI) *m/z*: calcd for C₁₆H₁₃BrNaO₂S⁺ [M+Na]⁺ = 370.9712, found = 370.9713.

3-(Furan-3-ylmethylene)benzo[*b*]thiophen-2(3*H*)-one (1q)

The title compound was synthesized according to general procedure and purified by column chromatography.

E isomer, yellow powder, yield = 41 %; **m.p.** = 103 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): δ = 8.27 (d, *J* = 3.7 Hz, 1H), 7.67 (d, *J* = 1.7 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.47 (s, 1H), 7.37 – 7.21 (m, 3H), 6.65 (dd, *J* = 3.7, 1.2 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): δ = 191.9, 151.2, 146.7, 134.8,

132.9, 128.8, 127.1, 125.7, 123.2, 122.8, 120.9, 120.4, 114.0 ppm; **IR** (KBr): v = 3357, 3120, 3055, 3016, 2092, 2074, 1942, 1912, 1850, 1772, 1685, 1604, 1586, 1536, 1473, 1449, 1395, 1341, 1302, 1290, 1219, 1159, 1129, 1093, 1048, 1033, 931, 890, 863, 824, 746, 722, 701, 680, 612, 588 cm⁻¹; **HRMS** (ESI) m/z calcd for C₁₃H₉O₂S⁺ [M+H]⁺ = 229.0318, found = 229.0316.

(*E*)-3-Butylidenebenzo[*b*]thiophen-2(3*H*)-one (1r)

The title compound was synthesized according to general procedure and purified by column chromatography.

E isomer, brownish solid, yield = 35 %; **m.p.** = 85.0 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): δ = 7.67 (d, *J* = 7.6 Hz, 1H), 7.39 – 7.37 (m, 1H), 7.33 – 7.24 (m, 2H), 7.05 (t, *J* = 7.3 Hz, 1H), 2.67 (q, *J* = 7.4 Hz, 2H), 1.72 (h, J = 7.4 Hz,

2H), 1.07 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 194.1$, 144.1, 135.5, 134.3, 131.3, 129.0, 126.0, 125.0, 123.5, 31.4, 22.1, 14.0 ppm; **IR** (KBr): v = 3058, 2866, 1694, 1625, 1583, 1467, 1446, 1374, 1347, 1293, 1254, 1186, 1132, 1105, 1042, 1024, 914, 851 cm⁻¹; **HRMS** (ESI) *m*/*z*: calcd for C₁₂H₁₂ONaS⁺ [M+Na]⁺ = 227.0501, found = 227.0502.

(*E*)-3-(cyclohexylmethylene)benzo[*b*]thiophen-2(3*H*)-one (1s)

The title compound was synthesized according to general procedure and purified by column chromatography.

E isomer, yellow oil, yield = 33 %; ¹H NMR (400 MHz, Chloroform-*d*): $\delta = 7.49 - 7.39$ (m, 1H), 7.33 - 7.17 (m, 3H), 6.74 (d, J = 9.8 Hz, 1H), 3.63 (tdt, J = 11.1, 9.8, 3.5 Hz, 1H), 1.86 - 1.66 (m, 5H), 1.49 - 1.34 (m, 2H), 1.33

- 1.13 (m, 3H). ppm; ¹³C **NMR** (101 MHz, Chloroform-*d*): δ = 193.5, 149.8, 134.3, 132.0, 131.3, 128.8, 125.7, 123.1, 120.5, 36.3, 32.1, 25.8, 25.4 ppm; **IR** (KBr): *v* = 3933, 3892, 3886, 3874, 3644, 3621, 3616, 3780, 3771, 3760, 3752, 3736, 3726, 3712, 3676, 3650, 3629, 3361, 3297, 3297, 3138, 3063, 3028, 2992, 2925, 2850, 2790, 2656, 2365, 2254, 1938, 1905, 1870, 1830, 1783, 1689, 1614, 1588, 1572, 1550, 1508, 1462, 1449, 1364, 1344, 1314, 1290, 1262, 1239, 1216, 1178, 1160, 1131, 1109, 1071, 1029, 1004, 952, 930, 922, 906, 877, 755, 726, 711, 692, 674, 589 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd for C₁₅H₁₇OS⁺ [M+H]⁺ = 245.0995, found = 245.0995.

(Z)-4-Benzylidene-2-phenylthiazol-5(4H)-one (5c)

The title compound was synthesized according to reported procedure.⁵ Yellow solid, yield = 52 %; **m.p.** = 132 °C, (lit,⁵ m. p. = 132°C); ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 8.29 - 8.27$ (m, 2H), 8.05 -8.02 (m, 2H), 7.61 - 7.45 (m, 6H), 7.26 (s, 1H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 194.7$, 166.8, 146.2, 133.7, 133.4, 133.2 (2C), 132.7, 131.3, 131.3, 129.0 (2C), 128.9 (2C), 128.3 (2C) ppm; **IR** (KBr):

v = 3360, 3064, 3022, 1972, 1796, 1694, 1613, 1571, 1512, 1485, 1440, 1314, 1257, 1141, 1030, 1003, 982, 934, 746 cm⁻¹;**HRMS**(ESI+) m/z calcd for C₁₇H₁₅NNaO₂S⁺ [M+Na]⁺ = 320.0716, found = 320.0721.

General procedure for formal cycloaddition reaction

To a solution of corresponding allenic compound 2 (0.12 mmol, 1.2 eq.) in MeOH (0.5 ml) was quinidine (6.5 mg, 0.02 mmol, 0.2 eq.) added in one portion. The mixture was stirred for 10 minutes at room temperature. Then corresponding alkylidene compound 1 (0.1 mmol, 1.0 eq.) and 2,4-DNBA (2.1 mg, 0.01 mmol, 0.1 eq.) were added to the reaction mixture. The reaction was stirred for the indicated time.

Method A:

After the reaction was completed the solvent was evaporated. Crude product was purified by column chromatography (Hex/EtOAc mixtures).

Method B:

After the reaction was completed the precipitate was filtered and washed with minimal amount of cold MeOH.

Benzyl (R,E)-2-(4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-

ylidene)acetate (3a)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a white solid, $3a/4a \ge 20:1$.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 90 %; yield 3a = 92 %; $[\alpha]_D^{20} = -15.4$

 $(c = 0.6, CHCl_3).$

Method B: ee = 99 %; yield **3a** = 73 %; $[\alpha]_{\mathbf{D}}^{20} = -17.7$ (c = 0.5, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 207$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 5.8$ min (major enan.), $t_{\rm R} = 10.0$ min (minor enan.), **m.p.** = 113.6 °C, ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.80 - 7.64$ (m, 1H), 7.44 – 7.12 (m, 13H), 5.84 (d, J = 1.5 Hz, 1H), 5.11 (q, J = 12.5 Hz, 2H), 4.38 (dd, J = 6.5, 4.3 Hz, 1H), 4.10 (dd, J = 15.5, 4.3 Hz, 1H), 3.36 (ddd, J = 15.4, 6.6, 1.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 166.3$, 165.9, 153.5, 141.4, 136.2, 136.0, 131.6, 128.7 (2C), 128.5 (2C), 128.1, 128.0 (2C), 127.4 (2C), 127.1, 124.8, 123.4, 122.4, 120.8, 112.3, 101.7, 65.8, 36.0, 31.1 ppm; **IR** (KBr): v = 3067, 3034, 2959, 2887, 2836, 1945, 1900, 1870, 1820, 1787, 1703, 1655, 1598, 1586, 1548, 1497, 1470, 1452, 1434, 1389, 1356, 1306, 1266, 1248, 1228, 1207, 1195, 1174, 1102, 1016, 1063, 1018, 988 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₂₆H₂₀NaO₃S⁺ [M+Na]⁺: 435.1025, found: 435.1024.

Benzyl (*R*,*E*)-2-(6-chloro-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3b)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a white solid, $3b/4b \ge 20:1$.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 25:1), *ee* = 86 %; (*c* = 0.9 CHCl₂)

yield $\mathbf{3b} = 82 \%$; $[\alpha]_{\mathbf{D}}^{20} = 28.6 (c = 0.9, \text{CHCl}_3)$. Method B: ee = 89 %, yield $\mathbf{3b} = 80 \%$, $[\alpha]_{\mathbf{D}}^{20} = 29.3 (c = 1.1, \text{CHCl}_3)$. Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IA column (mobile phase: *n*-heptane/propan-2-ol – 97:3, $\lambda = 232$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 10.0$ min (minor. enan.), $t_{\rm R} = 10.7$ min (major. enan.); **m.p.** = 104.3 °C; ¹**H NMR** (400 MHz, Chloroform-*d*) $\delta = 7.59$ (d, J = 8.5 Hz, 1H), 7.39 – 7.21 (m, 8H), 7.21 – 7.07 (m, 4H), 5.83 (d, J = 1.5 Hz, 1H), 5.09 (q, J = 12.5 Hz, 2H), 4.33 (dd, J = 6.5, 4.0 Hz, 1H), 4.10 (dd, J = 15.4, 4.1 Hz, 1H), 3.30 (ddd, J = 15.4, 6.5, 1.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*) $\delta = 166.1$, 165.4, 155.0, 140.9, 137.5, 136.0, 131.1, 129.6, 128.8 (2C), 128.5 (2C), 128.1 (2C), 128.0, 127.3 (2C), 127.3, 123.8, 123.5, 120.5, 112.0, 102.2, 65.9, 35.9, 31.0 ppm; **IR** (KBr): v = 3082, 3064, 3025, 3004, 2989, 2941, 2923, 2869, 2851, 1957, 1870, 1817, 1709, 1649, 1595, 1577, 1545, 1500, 1449, 1428, 1380, 1353, 1329, 1308, 1293, 1260, 1222, 1204, 1168, 1102, 1078, 1027, 994, 967, 863 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₂₆H₁₉ClNaO₃S [M+Na]⁺: 469.0628, found: 469.0636.

Benzyl (*R*,*E*)-2-(6-nitro-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3c)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a white solid, $3c/4c \ge 20:1$.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 7:1), ee = 80 %; yield CHCl₂)

3c = 72 %; $[\alpha]_D^{20} = 52.2 (c = 1.4, CHCl_3)$.

Method B: ee = 80 %; yield 3c = 65 %; $[\alpha]_D^{20} = 48.1$ (c = 0.5, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 280$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 10.2$ min (major enan.), $t_{\rm R} = 10.9$ min (minor enan.); **m.p.** = 98.8 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 8.06$ (dd, J = 8.8, 2.2 Hz, 1H), 7.98 (d, J = 2.2 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.40 – 7.26 (m, 8H), 7.21 – 7.14 (m, 2H), 5.87 (d, J = 1.4 Hz, 1H), 5.10 (q, J = 12.4 Hz, 2H), 4.43 (dd, J = 6.5, 4.4 Hz, 1H), 4.08 (dd, J = 15.5, 4.4 Hz, 1H), 3.39 (ddd, J = 15.4, 6.5, 1.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 165.9, 164.9, 156.0, 145.8, 140.4, 137.7, 136.5, 135.8, 129.0 (2C), 128.5 (2C), 128.2, 128.0 (2C), 127.6, 127.3 (2C), 123.0, 117.9, 116.1, 113.1, 102.8, 66.0, 36.1, 30.9 ppm;$ **IR**(KBr): <math>v = 3091, 3061, 3034, 2956, 2929, 2854, 1709, 1658, 1613, 1580, 1518, 1494, 1449, 1383, 1338, 1251, 1216, 1198, 1165, 1099, 1084, 1057, 1027, 991 cm⁻¹;**HRMS**(ESI+) <math>m/z: calcd. for C₂₆H₁₉NNaO₅S [M+Na]⁺: 480.0871, found: 480.0876.

Benzyl (*R*,*E*)-2-(6-bromo-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3e)

The title compound was synthesized according to general procedure (reaction time: 24 hours), affording the title compound as a white solid, 3e/4e = 15:1.

yield 3e = 87%; $[\alpha]_{D}^{20} = 43.7$ (*c* = 1.0, CHCl₃).

Method B: ee = 90 %; yield 3e = 88 %; $[\alpha]_D^{20} = 45.4$ (c = 0.8, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IA column (mobile phase: *n*-heptane/propan-2-ol – 97:3, $\lambda = 234$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 10.5$ min (minor enan.), $t_{\rm R} = 11.4$ min (major enan.); **m.p.** = 116.9 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.53$ (d, J = 8.5 Hz, 1H), 7.39 – 7.22 (m, 10H), 7.18 – 7.13 (m, 2H), 5.82 (d, J = 1.5 Hz, 1H), 5.09 (q, J = 12.5 Hz, 2H), 4.33 (dd, J = 6.5, 3.9 Hz, 1H), 4.12 (dd, J = 15.4, 4.0 Hz, 1H), 3.28 (ddd, J = 15.4, 6.5, 1.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*):

 δ = 166.1, 165.5, 154.8, 140.8, 137.8, 136.0, 130.1, 128.8 (2C), 128.5 (2C), 128.1, 128.0 (2C), 127.3 (3C), 126.5, 123.8, 123.5, 118.9, 111.9, 102.2, 65.9, 35.9, 31.0 ppm; **IR** (KBr): *v* = 3088, 3064, 3031, 2932, 2881, 2851, 1876, 1715, 1697, 1649, 1595, 1577, 1500, 1440, 1416, 1380, 1362, 1332, 1308, 1257, 1222, 1198, 1162, 1111, 1066, 1021 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₂₆H₁₉BrNaO₃S [M+Na]⁺: 513.0127, found: 513.0130.

Benzyl (*R*,*E*)-2-(7-bromo-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3f)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a white solid; $3f/4f \ge 20:1$.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 25:1); ee = 83%; yield **3f** =

86 %; $[\alpha]_{D}^{20} = -8.9 \ (c = 0.8, \text{CHCl}_3).$

Method B: ee = 87 %; yield 3f = 82 %; $[\alpha]_D^{20} = -10.0$ (c = 1.1, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IA column (mobile phase: *n*-heptane/propan-2-ol – 97:3, $\lambda = 206$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 10.1$ min (minor. enan.), $t_{\rm R} = 11.0$ min (major. enan.); **m.p.** = 136.1 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.83$ (d, J = 1.8 Hz, 1H), 7.41 – 7.29 (m, 7H), 7.28 – 7.23 (m, 1H), 7.23 – 7.09 (m, 2H), 6.97 (d, J = 8.5 Hz, 1H), 5.84 (d, J = 1.3 Hz, 1H), 5.12 (q, J = 12.5 Hz, 2H), 4.34 (dd, J = 6.5, 4.7 Hz, 1H), 4.01 (dd, J = 15.5, 4.7 Hz, 1H), 3.43 (ddd, J = 15.5, 6.5, 1.5 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 166.2$, 165.5, 153.9, 141.1, 136.0, 135.1, 133.0, 128.8 (2C), 128.6 (2C), 128.2 (2C), 128.1 (2C), 127.4 (2C), 127.3, 124.9, 122.1, 116.6, 112.1, 102.1, 65.9, 36.2, 31.2 ppm; **IR** (KBr): v = 3082, 3067, 3028, 3010, 2941, 2929, 2893, 2884, 2851, 1703, 1655, 1598, 1577, 1539, 1491, 1458, 1422, 1380, 1362, 1299, 1263, 1245, 1213, 1192, 1168, 1135, 1099, 1054, 1030, 991 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for C₂₆H₁₉BrNaO₃S [M+Na]⁺: 513.0121, found: 513.0131.

Benzyl (*R*,*E*)-2-(8-bromo-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3g)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a white solid, $3g/4g \ge 20:1$.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 25:1), *ee* = 87 %; yield **3g** = 78 9, CHCl₃).

%; $[\alpha]_{D}^{20} = -43.5 \ (c = 0.9, \text{CHCl}_3).$

Method B: ee = 90 %; yield 3g = 83 %; $[\alpha]_D^{20} = -45.0$ (c = 1.2, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IA column (mobile phase: *n*-heptane/propan-2-ol – 97:3, $\lambda = 206$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 8.0$ min (minor enan.), $t_{\rm R} = 8.8$ min (major enan.), **m.p.** = 123.8 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.40 - 7.33$ (m, 5H), 7.33 – 7.29 (m, 3H), 7.28 – 7.22 (m, 1H), 7.21 – 7.15 (m, 2H), 7.13 – 7.08 (m, 2H), 5.87 (d, J = 1.4 Hz, 1H), 5.12 (q, J = 12.5 Hz, 2H), 4.36 (dd, J = 6.5, 4.5 Hz, 1H), 4.06 (dd, J = 15.5, 4.5 Hz, 1H), 3.40 (ddd, J = 15.4, 6.5, 1.5 Hz, 1H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 166.2, 165.4, 154.3, 141.1, 137.4, 136.0, 133.6, 128.8 (2C), 128.5 (2C), 128.1, 128.0 (2C), 127.4 (2C), 127.3, 126.2 (2C), 119.7, 115.8, 113.4, 102.2, 65.9, 36.4, 31.1 ppm;$ **IR**(KBr): <math>v = 3028, 2956, 1694, 1646, 1604, 1580, 1539, 1497, 1458, 1410, 1383, 1356, 1311, 1257, 1228, 1195, 1171, 1141, 1114, 1045, 1024, 961 cm⁻¹;**HRMS**(ESI+) <math>m/z: calcd. for C₂₆H₁₉BrNaO₃S [M+Na]⁺: 513.0121, found: 513.0131.

Benzyl (*R*,*E*)-2-(4-(4-chlorophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3h)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a white solid, 3h/4h > 20:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 88 %; yield 3h = 82 %; $[\alpha]_D^{20} = -12.5$ (c = 0.8, CHCl₃).

Method B: ee = 93 %; yield **3h** = 63 %; $[\alpha]_D^{20} = -14.7$ (c = 0.9, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 6.5$ min (minor enan.), $t_{\rm R} = 14.0$ min (major enan.), **m.p.** = 122.0 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.70$ (dd, J = 5.9, 3.1 Hz, 1H), 7.39 – 7.29 (m, 5H), 7.25 – 7.21 (m, 4H), 7.17 – 7.14 (m, 1H), 7.10 (d, J = 8.4 Hz, 2H), 5.83 (s, 1H), 5.12 – 5.07 (m, 2H), 4.35 (dd, J = 6.3, 3.8 Hz, 1H), 4.13 (dd, J = 15.4, 3.8 Hz, 1H), 3.27 (dd, J = 15.9, 7.1 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 166.2$, 165.4, 153.8, 139.9, 136.0, 132.9, 131.7, 128.9 (2C), 128.8 (2C), 128.6 (2C), 128.2, 128.1 (2C), 124.9, 123.7, 122.6, 120.6, 111.7, 102.1, 65.9, 35.4, 30.9 ppm; **IR** (KBr): v = 1700, 1646, 1595, 1580, 1551, 1491, 1461, 1431, 1383, 1350, 1311, 1269, 1204, 1156, 1108, 1021, 955, 920, 860, 758, 740 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₂₆H₁₉NaO₃ClS⁺ [M+Na]⁺: 469.0636, found: 469.0631.

Benzyl (*R*,*E*)-2-(4-(4-cyanophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3i)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a yellowish solid, 3i/4i > 20:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 80 %; yield $3\mathbf{x} = 90$ %; $[\alpha]_D^{20} = -15.1$ (c = 0.3, CHCl₃).

Method B: ee = 78 %; yield $3\mathbf{x} = 37$ %; $[\alpha]_D^{20} = -10.0$ (c = 0.5, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 80:20, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 10.3$ min (minor enan.), $t_{\rm R} = 25.4$ min (major enan.), **m.p.** = 118.3 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.81 - 7.69$ (m, 1H), 7.61 – 7.49 (m, 2H), 7.38 (qd, J = 4.2, 2.0 Hz, 3H), 7.34 – 7.29 (m, 4H), 7.28 – 7.22 (m, 2H), 7.21 – 7.07 (m, 1H), 5.86 (d, J = 1.6 Hz, 1H), 5.20 – 5.02 (m, 2H), 4.45 (dd, J = 6.6, 3.5 Hz, 1H), 4.23 (dd, J = 15.4, 3.6 Hz, 1H), 3.28 (ddd, J = 15.3, 6.6, 1.7 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 166.1$, 164.7, 154.3, 146.8, 135.9, 135.7, 132.6 (2C), 131.7, 128.6 (2C), 128.3 (3C), 128.1 (2C), 125.1, 123.9, 122.7, 120.3, 118.7, 111.2, 110.8, 102.6, 66.0, 36.0, 30.4 ppm; **IR** (KBr): v = 2223, 1709, 1652, 1607, 1583, 1500, 1467, 1434, 1380, 1353, 1302, 1269, 1210, 1159, 1090, 1078, 1018, 985, 851, 764, 734, 698 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for C₂₇H₂₀O₃NS⁺ [M+H]⁺: 438.1158, found: 438.1154.

Benzyl (*R*,*E*)-2-(4-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3*b*]pyran-2-ylidene)acetate (3j)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a transparent oil, 3j/4j = 15:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 84 %; yield $3\mathbf{j} = 80$ %; $[\alpha]_{\mathbf{D}}^{20} = -4.4$ (c = 1.2, CHCl₃).

Method B: ee = 75 %; yield 3j = 53 %; $[\alpha]_D^{20} = -2.1$ (c = 1.0, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 7.0$ min (minor enan.), $t_{\rm R} = 17.8$ min (major enan.); ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.80 - 7.68$ (m, 1H), 7.60 - 7.49 (m, 2H), 7.41 - 7.27 (m, 7H), 7.24 (q, J = 4.0, 3.5 Hz, 2H), 7.20 - 7.07 (m, 1H), 5.85 (d, J = 1.5 Hz, 1H), 5.21 - 5.00 (m, 2H), 4.44 (dd, J = 6.6, 3.7 Hz, 1H), 4.21 (dd, J = 15.4, 3.7 Hz, 1H), 3.29 (ddd, J = 15.4, 6.7, 1.7 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 166.2, 165.1, 154.1, 145.5, 135.9$ (2C), 131.7, 129.4 (q, J = 32.5 Hz), 128.6 (2C), 128.2, 128.1 (2C), 127.8 (2C), 125.8 (q, J = 3.8 Hz, 2C), 125.0, 123.8 (q, J = 272.2 Hz) 123.8, 122.6, 120.5, 111.3, 102.3, 66.0, 35.8, 30.7 ppm; ¹⁹**F NMR** (376 MHz, Chloroform-*d*): $\delta = -62.40$ ppm; **IR** (KBr): v = 3067, 3034, 2956, 1712, 1655, 1622, 1586, 1556, 1494, 1467, 1440, 1416, 1383, 1356, 1323, 1269, 1198, 1162, 1105, 1069, 1015, 988, 845, 761, 731, 701, 609 cm⁻¹;**HRMS**(ESI+) <math>m/z: calcd. for C₂₇H₂₀O₃F₃S⁺ [M+H]⁺: 481.1080, found: 481.1076.

Benzyl (*R*,*E*)-2-(4-(4-nitrophenyl)-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-ylidene)acetate (3k)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a yellow solid, 3k/4k = 17:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 20:1), ee = 75 %; yield $3\mathbf{k} = 72$ %; $[\alpha]_{\mathbf{D}}^{20} = -12.8$ (c = 0.6, CHCl₃).

Method B: ee = 73 %; yield $3\mathbf{k} = 73$ %; $[\alpha]_D^{20} = -13.6$ (c = 0.3, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 80:20, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 9.8$ min (minor enan.), $t_{\rm R} = 24.2$ min (major enan.), **m.p.** = 114 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 8.11$ (d, J = 8.8 Hz, 2H), 7.73 – 7.70 (m, 1H), 7.34 – 7.32 (m, 5H), 7.28 – 7.24 (m, 4H), 7.14 – 7.12 (m, 1H), 5.84 (d, J = 1.5 Hz, 1H), 5.14 – 5.03 (m, 2H), 4.49 (dd, J = 6.7, 3.5 Hz, 1H), 4.24 (dd, J = 15.3, 3.5 Hz, 1H), 3.27 (ddd, J = 15.4, 6.7, 1.7 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 166.1, 164.5, 154.4, 148.8, 147.1, 135.8, 135.7, 131.6, 128.5 (2C), 128.3 (2C), 128.3, 128.1 (2C), 125.1, 124.0 (2C), 123.9, 122.7, 120.2, 110.7, 102.7, 66.0, 35.7, 30.4 ppm;$ **IR**(KBr): <math>v = 1712, 1655, 1601, 1583, 1524, 1467, 1437, 1386, 1350, 1299, 1269, 1204, 1159, 1102, 1021, 988, 964, 857, 752, 731, 701 cm⁻¹;**HRMS**(ESI+)*m/z*: calcd. for C₂₆H₁₉NaO₅NS⁺ [M+Na]⁺: 480.0876, found: 480.0871.

Benzyl (*R*,*E*)-2-(4-(4-methoxyphenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3l)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a white solid, 3l/4l > 20:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 85 %; yield 3l = 90 %; $[\alpha]_D^{20} = -20.9$ (c = 0.4, CHCl₃).

Method B: ee = 85%; yield **3l** = 62 %; $[\alpha]_D^{20} = -17.3$ (c = 0.7, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 7.1$ min (minor enan.), $t_{\rm R} = 10.8$ min (major enan.), **m.p.** = 143 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.70 - 7.66$ (m, 1H), 7.37 - 7.28 (m, 5H), 7.23 - 7.18 (m, 2H), 7.17 - 7.14 (m, 1H), 7.08 (d, J = 8.6 Hz, 2H), 6.79 (d, J = 8.7 Hz, 2H), 5.80 (d, J = 1.4 Hz, 1H), 5.10 (q, J = 12.5 Hz, 2H), 4.32 (dd, J = 6.5, 4.1 Hz, 1H), 4.06 (dd, J = 15.4, 4.2 Hz, 1H), 3.76 (s, 3H), 3.30 (ddd, J = 15.4, 6.5, 1.6 Hz, 1H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 166.3$, 166.1, 158.6, 153.4, 136.3, 136.1, 133.5, 131.6, 128.5 (2C), 128.4 (2C), 128.1, 128.0 (2C), 124.8, 123.4, 122.4, 120.9, 114.0 (2C), 112.6, 101.7, 65.8, 55.2, 35.3, 31.3 ppm; **IR** (KBr): v = 3061, 3040, 2998, 2950, 2929, 2899, 2642, 1709, 1655, 1613, 1583, 1548, 1509, 1461, 1440, 1386, 1356, 1302, 1254, 1216, 1156, 1105, 1078, 1036, 1027, 985, 848, 836, 758, 737, 695 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₂₇H₂₂NaO₄S⁺ [M+Na]⁺: 465.1131, found: 465.1129.

Benzyl (*R*,*E*)-2-(4-(*p*-tolyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3m)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a brownish solid, 3m/4m > 20:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 89 %; yield 3m = 95 %; $[\alpha]_D^{20} = -26.8$ (c = 0.5, CHCl₃).

Method B:
$$ee = 89$$
 %; yield $3m = 77$ %; $[\alpha]_{D}^{20} = -17.7$ ($c = 1.6$,

CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 5.5$ min (minor enan.), $t_{\rm R} = 8.9$ min (major enan.), **m.p.** = 119 °C; ¹**H** NMR (400 MHz, Chloroform-*d*): $\delta = 7.68$ (dq, J = 5.9, 3.5 Hz, 1H), 7.41 – 7.28 (m, 5H), 7.24 – 7.11 (m, 3H), 7.06 (s, 4H), 5.81 (d, J = 1.5 Hz, 1H), 5.18 – 5.04 (m, 2H), 4.33 (dd, J = 6.5, 4.2 Hz, 1H), 4.07 (dd, J = 15.4, 4.2 Hz, 1H), 3.31 (ddd, J = 15.4, 6.5, 1.6 Hz, 1H), 2.30 (s, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 166.3$, 166.0, 153.3, 138.4, 136.6, 136.3, 136.1, 131.6, 129.4 (2C), 128.5 (2C), 128.1 (2C), 128.0, 127.2 (2C), 124.7, 123.4, 122.4, 120.9, 112.5, 101.6, 65.8, 35.6, 31.2, 21.1 ppm; **IR** (KBr): v = 3052, 3025, 2917, 1712, 1652, 1571, 1545, 1515, 1461, 1437, 1380, 1347, 1266, 1204, 1165, 1102, 1075, 1024, 976, 929, 866, 848, 740, 725 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₂₇H₂₂NaO₃S⁺ [M+Na]⁺: 449.1182, found: 449.1178.

Benzyl (*R*,*E*)-2-(4-(4-bromophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3n)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a yellowish solid, 3n/4n > 20:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), *ee* = 86 %; yield 3n = 86 %; $[\alpha]_D^{20} = -9.5$ (*c* = 0.6, CHCl₃).

Method B: ee = 90 %; yield **3n** = 53 %; $[\alpha]_D^{20} = -12.0$ (c = 0.8, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 7.2$ min (minor enan.), $t_{\rm R} = 15.2$ min (major enan.), **m.p.** = 126.8 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.71 - 7.67$ (m, 1H), 7.39 – 7.28 (m, 7H), 7.24 – 7.22 (m, 2H), 7.15 – 7.13 (m, 1H), 7.04 (d, J = 8.4 Hz, 2H), 5.82 (d, J = 1.6 Hz, 1H), 5.14 – 5.06 (m, 2H), 4.33 (dd, J = 6.5, 3.8 Hz, 1H), 4.12 (dd, J = 15.4, 3.8 Hz, 1H), 3.26 (ddd, J = 15.4, 6.6, 1.7 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 166.2$, 165.3, 153.8, 140.4, 136.0 (2C), 131.8 (2C), 131.6, 129.1 (2C), 128.6 (2C), 128.2, 128.0 (2C), 124.9, 123.6, 122.5, 121.0, 120.6, 111.6, 102.1, 65.9, 35.5, 30.8 ppm; **IR** (KBr): v = 3064, 3031, 2926, 2893, 2857, 1948, 1903, 1867, 1826, 1784, 1691, 1646, 1604, 1580, 1491, 1461, 1431, 1377, 1347, 1311, 1269, 1237, 1204, 1162, 1111, 1078, 1024, 1009, 952, 920, 869, 851, 812, 764, 740, 692 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for $C_{26}H_{20}BrO_3S^+$ [M+H]⁺: 491.0311, found: 491.0306.

Benzyl (*R*,*E*)-2-(4-(3-bromophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (30)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a yellow solid, 30/40 > 20:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 85 %; yield **30** = 94 %; $[\alpha]_{D}^{20} = -26.3$ (c = 0.5, CHCl₃).

Method B: ee = 86 %; yield **30** = 63 %; $[\alpha]_{D}^{20} = -23.5$ (c = 1.5, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 80:20, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 6.2$ min (minor enan.), $t_{\rm R} = 12.4$ min (major enan.), **m.p.** = 132 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.71 - 7.69$ (m, 1H), 7.39 – 7.30 (m, 7H), 7.25 – 7.22 (m, 2H), 7.16 – 7.09 (m, 3H), 5.85 (d, J = 1.5 Hz, 1H), 5.16 – 5.08 (m, 2H), 4.33 (dd, J = 6.6, 4.0 Hz, 1H), 4.08 (dd, J = 15.5, 4.0 Hz, 1H), 3.31 (ddd, J = 15.5, 6.6, 1.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 166.16$, 165.14, 153.90, 143.81, 135.95, 135.89, 131.59, 130.42, 130.35, 130.29, 128.52 (2C), 128.11, 128.01 (2C), 126.06, 124.90, 123.62, 122.75, 122.50, 120.62, 111.37, 102.14, 65.91, 35.70, 30.89 ppm; **IR** (KBr): v = 3061, 3034, 2950, 2932, 1712, 1658, 1586, 1464, 1434, 1386, 1356, 1299, 1266, 1216, 1156, 1102, 1072, 1021, 997, 929, 851, 788, 755, 734, 692 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for C₂₆H₂₀BrO₃S⁺ [M+H]⁺: 491.0311, found: 491.0303.

Benzyl (*R*,*E*)-2-(4-(2-bromophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3p)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a white wax, 3p/4p = 6:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 89 %; yield 3p = 58 %; $[\alpha]_D^{20} = -11.0$ (c = 0.3, CHCl₃).

Method B: ee = 88 %; yield 3p = 42 %; $[\alpha]_{D}^{20} = -13.5$ (c = 1.1, CHCl₃). Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IA column (mobile phase: *n*-heptane/propan-2-ol – 97:3, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 6.1$ min (major enan.), $t_{\rm R} = 7.7$ min (minor enan.); ¹H NMR (400 MHz, Chloroform-*d*): $\delta = 7.71 - 7.67$ (m, 1H), 7.63 - 7.61 (m, 1H), 7.36 - 7.31 (m, 3H), 7.28 - 7.26 (m, 2H), 7.23 - 7.21 (m, 2H), 7.16 - 7.14 (m, 1H), 7.11 - 7.06 (m, 2H), 6.85 - 6.82 (m, 1H), 5.83 (d, J = 1.6 Hz, 1H), 5.13 - 5.02 (m, 2H), 4.89 (dd, J = 6.9, 3.3 Hz, 1H), 4.18 (dd, J = 15.5, 3.2 Hz, 1H), 3.21 (ddd, J = 15.5, 6.9, 1.7 Hz, 1H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 166.0$, 165.0, 154.3, 140.0, 136.0, 135.8, 133.2, 131.6, 128.9, 128.7, 128.5 (2C), 128.1, 128.0 (2C), 127.7, 124.9, 123.7, 122.4, 120.7, 111.4, 102.6, 65.9, 35.2, 29.4 ppm; IR (KBr): v = 3072, 3032, 2962, 2937, 2890, 1692, 1649, 1574, 1494, 1462, 1437, 1383, 1352, 1312, 1278, 1208, 1154, 1112, 1075, 1029, 1002, 957, 926, 856, 761, 743, 695 cm⁻¹; HRMS (ESI+) m/z: calcd. for $C_{26}H_{20}BrO_3S^+$ [M+H]⁺: 491.0311, found: 491.0304.

Benzyl (*R*,*E*)-2-(4-(furan-3-yl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3q)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a yellow oil, 3q/4q > 20:1 (Slow decomposition of product was observed by staying longer time into CDCl₃ – see carbon spectra). *Method A:* Crude product was purified by column chromatography (hexane/EtOAc = 50:1), *ee* = 66 %; yield 3q = 82 %; $[\alpha]_D^{20} = 19.6$ (*c* = 1.1, CHCl₃).

Method B: ee = 66 %; yield 3q = 46 %; $[\alpha]_D^{20} = 15.3$ (c = 0.7, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 6.3$ min (minor enan.), $t_{\rm R} = 10.6$ min (major enan.); ¹H NMR (400 MHz, Chloroform-*d*): $\delta = 7.69$ (d, J = 7.9 Hz, 1H), 7.51 - 7.43 (m, 1H), 7.43 - 7.21 (m, 8H), 6.24 (dd, J = 3.2, 1.9 Hz, 1H), 6.03 (d, J = 3.2 Hz, 1H), 5.86 (d, J = 1.6 Hz, 1H), 5.28 - 5.10 (m, 2H), 4.47 (dt, J = 11.7, 3.4 Hz, 2H), 3.10 (ddd, J = 16.1, 7.0, 1.7 Hz, 1H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 166.5, 165.8, 153.9, 153.5, 142.1, 136.2, 136.1, 131.5, 128.6$ (2C), 128.2, 128.1 (2C), 125.0, 123.6, 122.4, 120.63, 110.5, 110.2, 106.3, 101.9, 66.0, 29.6, 27.5 ppm; IR (KBr): v = 3061, 3031, 2959, 2929, 1712, 1661, 1601, 1586, 1553, 1503, 1467, 1437, 1383, 1350, 1308, 1269, 1210, 1171, 1156, 1144, 1105, 1021, 994, 958, 931, 917, 887, 854, 812, 761, 737, 701 cm⁻¹; HRMS (ESI+) <math>m/z: calcd. for C₂₄H₁₈NaO₄S⁺ [M+Na]⁺: 425.0818, found: 425.0813.

Benzyl (*S*,*E*)-2-(4-propyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3r)

The title compound was synthesized according to general procedure (reaction time: 15 hours), affording the title compound as a yellowish oil, 3r/4r = 20:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 100:1), ee = 89 %; yield 3r = 36 %; $[\alpha]_D^{20} =$

121.8 (*c* = 0.4, CHCl₃).

Method B: No precipitate was observed.

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 4.6$ min (minor enan.), $t_{\rm R} = 5.9$ min (major enan.); ¹H NMR (300 MHz, Chloroform-*d*): $\delta = 7.68$ (d, J = 7.9 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.40 – 7.33 (m, 6H), 7.24 – 7.21 (m, 1H), 5.85 (s, 1H), 5.26 – 5.15 (m, 2H), 4.32 (d, J = 15.5 Hz, 1H), 3.20 – 3.13 (m, 1H), 2.59 (dd, J = 15.4, 6.1 Hz, 1H), 1.62 – 1.40 (m, 4H), 0.91 (t, J = 6.7 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 167.3$, 166.8, 152.0, 136.5, 136.2, 131.7, 128.6 (2C), 128.14, 128.13 (2C), 124.7, 123.2, 122.5, 120.1, 115.2, 101.4, 65.9, 36.8, 29.7, 27.2, 20.6, 14.1 ppm; IR (KBr): v = 3082, 3063, 3051, 2953, 2871, 1712, 1643, 1602, 1588, 1547, 1501, 1467, 1422, 1365, 1315, 1288, 1278, 1203, 1186, 1175, 1155, 1124, 1069, 1056, 1024, 1007 cm⁻¹; HRMS (ESI+) *m/z*: calcd. for C₂₃H₂₂NaO₃S⁺ [M+H]⁺: 379.1362, found: 379.1361.

Benzyl (*R*,*E*)-2-(4-cyclohexyl-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-ylidene)acetate (3s)

The title compound was synthesized according to general procedure (reaction time: 20 hours), affording the title compound as a colorless oil, 3s/4s = 20:1.

Method A: Crude product was purified by column chromatography (hexane/toluene = 3:1), ee = 89 %; yield 3s = 61 %; $[\alpha]_{D}^{20} = 81.6$

 $(c = 0.8, \text{CHCl}_3).$

Method B: No precipitate was observed.

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IA column (mobile phase: *n*-heptane/propan-2-ol – 97:3, $\lambda = 293$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 5.0$ min (major enan.), $t_{\rm R} = 5.9$ min (minor enan.); ¹H NMR (400 MHz, Chloroform-*d*): $\delta = 7.70$ (dt, J = 7.9, 0.9 Hz, 1H), 7.55 (dt, J = 8.0, 1.0 Hz, 1H), 7.46 – 7.33 (m, 6H), 7.27 – 7.23 (m, 1H), 5.81 (d, J = 2.0 Hz, 1H), 5.33 – 5.16 (m, 2H), 4.51 (dd, J = 16.0, 1.8 Hz, 1H), 2.97 (td, J = 6.7, 1.8 Hz, 1H), 2.49 (ddd, J = 16.1, 6.3, 2.2 Hz, 1H), 1.86 – 1.77 (m, 1H), 1.76 – 1.67 (m, 2H), 1.67 – 1.60 (m, 2H), 1.52 (ddd, J = 11.1, 7.4, 3.4 Hz, 1H), 1.27 – 0.95 (m, 5H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 168.4$, 166.8, 152.2, 137.1, 136.3, 131.7, 128.5 (2C), 128.1 (3C), 124.6, 123.2, 122.4, 120.9, 114.5, 100.2, 65.8, 42.5, 35.7 (2C), 30.4, 26.4 (2C), 26.3, 25.4 ppm; **IR** (KBr): v = 3893, 3858, 3827, 3610, 3790, 3739, 3727, 3704, 3682, 3663, 3534, 3088, 3064, 3032, 2925, 2851, 2793, 2670, 2359, 23359, 2176, 1948, 1895, 1863, 1813, 1775, 1709, 1654, 1648, 1598, 1580, 1549, 1512, 1496, 1464, 1449, 1435, 1386, 1354, 1314, 1271, 1253, 1237, 1212, 1185, 1173, 1155, 1111, 1075, 1020, 1003, 995, 958, 930, 846, 820, 788, 755, 728, 695 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for C₂₆H₂₇O₃S⁺ [M+H]⁺: 419.1678, found: 419.1676.

Methyl (*R*,*E*)-2-(4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3t)

The title compound was synthesized according to general procedure (reaction time: 40 hours), affording the title compound as a white solid; $3s/4s \ge 20:1$.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 25:1), ee = 89 %; yield 3s = 83

%; $[\alpha]_{\mathbf{D}}^{20} = -26.0 \ (c = 1.0, \text{CHCl}_3).$

Method B: ee = 98 %; yield 3s = 62 %; $[\alpha]_D^{20} = -45.5$ (c = 0.5, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 206$ nm, V = 1.0 ml/min, t = 25 °C), $t_R = 5.0$ min (minor. enan.), $t_R = 9.1$ min (major enan.); **m.p.** = 131.6 °C; ¹**H NMR** (400 MHz,

Chloroform-*d*): $\delta = 7.73 - 7.66$ (m, 1H), 7.34 - 7.23 (m, 3H), 7.23 - 7.18 (m, 4H), 7.17 - 7.12 (m, 1H), 5.77 (d, J = 1.5 Hz, 1H), 4.37 (dd, J = 6.6, 4.3 Hz, 1H), 4.08 (dd, J = 15.5, 4.3 Hz, 1H), 3.65 (s, 3H), 3.35 (ddd, J = 15.5, 6.6, 1.6 Hz, 1H) ppm; ¹³C NMR (101 MHz, Chloroform*d*): $\delta = 166.9$, 165.6, 153.5, 141.4, 136.2, 131.6, 128.7 (2C), 127.4, 127.1 (2C), 124.8, 123.4, 122.4, 120.8, 112.3, 101.5, 51.2, 36.0, 31.0 ppm; **IR** (KBr): v = 3070, 3061, 3028, 3016, 2995, 2950, 2884, 2833, 1709, 1640, 1601, 1574, 1548, 1500, 1464, 1434, 1356, 1317, 1287, 1269, 1201, 1180, 1156, 1114, 1069, 1024, 1009 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₂₀H₁₆NaO₃S [M+Na]⁺: 359.0709, found: 359.0712.

Benzyl (*S*,*E*)-2-(4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[3,2-*b*]pyran-2-ylidene)acetate (6a)

The title compound was synthesized according to general procedure (reaction time: 48 hours), affording the title compound as a yellowish wax, 6a/7a > 20:1 (*Note:* Slow decomposition of product was observed by staying longer time into CDCl₃ – see carbon spectra).

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 70:1), ee = 98 %; yield 6a = 52 %; $[\alpha]_D^{20} = -108.5$

 $(c = 0.5, CHCl_3).$

Method B: ee = 98 %; yield **6a** = 49 %; $[\alpha]_{D}^{20} = -103.8$ (c = 0.3, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 6.2$ min (major enan.), $t_{\rm R} = 7.2$ min (minor enan.); ¹H NMR (400 MHz, Chloroform-*d*): $\delta = \delta$ 7.77 (d, J = 7.5 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.37 – 7.29 (m, 10H), 7.28 – 7.25 (m, 1H), 5.89 (s, 1H), 5.17 – 5.10 (m, 2H), 4.34 (dd, J = 7.5, 5.9 Hz, 1H), 3.87 (ddd, J = 15.4, 5.9, 1.0 Hz, 1H), 3.66 (ddd, J = 15.3, 7.5, 1.0 Hz, 1H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 166.8$, 166.0, 141.6, 136.4, 136.2, 130.1, 129.1, 128.7 (2C), 128.5 (2C), 128.1, 128.0 (2C), 127.5 (2C), 127.5, 125.1, 124.4, 122.8, 119.8, 117.8, 100.4, 65.7, 37.6, 31.9 ppm; IR (KBr): v = 3064, 3031, 2950, 2929, 2854, 1706, 1646, 1589, 1548, 1500, 1437, 1374, 1353, 1296, 1263, 1216, 1174, 1123, 1081, 1060, 1027, 970, 920, 845, 755, 728, 695, 674 cm⁻¹; HRMS (ESI+) *m*/*z*: calcd. for C₂₆H₂₁O₃S [M+H]⁺: 413.1206, found: 413.1202.

Benzyl (*R*,*E*)-2-(2,7-diphenyl-6,7-dihydro-5*H*-pyrano[2,3-*d*]thiazol-5-ylidene)acetate (6b)

The title compound was synthesized according to general procedure (reaction time: 24 hours), affording the title compound as a white solid; crystals suitable for X-ray analysis were grown from boiling h *n*-heptane/*i*-PrOH mixture (9:1), **6b**/**7b** \ge 20:1;.

Pn N *Method A:* Crude product was purified by column chromatography (hexane/EtOAc = 10:1), ee = 98 %; yield **6b** = 66 %; $[\alpha]_D^{20} = -45.2$ (c = 1.1, CHCl₃).

Method B: ee = 99 %; yield **6b** = 68 %; $[\alpha]_{\mathbf{D}}^{\mathbf{20}} = -47.3$ (c = 0.7, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 80:20, $\lambda = 208$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 8.7$ min (major enan.), $t_{\rm R} = 10.9$ min (minor enan.); **m.p.** = 134.4 °C; ¹**H NMR** (400 MHz, Chloroform-*d*): $\delta = 7.96 - 7.82$ (m, 2H), 7.46 – 7.22 (m, 14H), 5.89 (d, J = 0.8 Hz, 1H), 5.13 (d, J = 2.8 Hz, 2H), 4.31 (dd, J = 8.0, 5.8 Hz, 1H), 3.93 (ddd, J = 15.3, 5.8, 0.8 Hz, 1H), 3.48 (ddd, J = 15.3, 8.1, 1.1 Hz, 1H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 166.6$, 165.3, 164.3, 156.1, 141.7, 136.0, 133.0, 130.4, 128.9 (4C), 128.5 (2C), 128.1 (2C), 127.7, 127.2 (2C), 125.7 (2C), 109.3, 101.5, 65.8, 36.6, 31.8 ppm; **IR** (KBr): v = 3088, 3061, 3022, 2929, 2857,

1700, 1655, 1601, 1559, 1494, 1455, 1431, 1359, 1332, 1305, 1269, 1234, 1186, 1168, 1123, 1075, 1057, 1036, 1021 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for C₂₇H₂₁NNaO₃S [M+Na]⁺: 462.1129, found: 462.1134.

Benzyl (*R*,*E*)-2-(2,7-diphenyl-6,7-dihydro-5*H*-pyrano[3,2-*d*]thiazol-5-ylidene)acetate (6c)

The title compound was synthesized according to general procedure (reaction time: 10 hours), affording the title compound as a white solid; 6c/7c > 20:1.

Method A: Crude product was purified by column chromatography (hexane/EtOAc = 50:1), ee = 87 %; yield 6c = 92 %; $[\alpha]_D^{20} = 5.3$ (c = 0.8, CHCl₃).

Method B: ee = 98 %; yield **6c** = 42 %; $[\alpha]_{D}^{20} = 7.7$ (c = 0.3, CHCl₃).

Enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 80:20, $\lambda = 210$ nm, V = 1.0 ml/min, t = 25 °C), $t_{\rm R} = 5.9$ min (minor. enan.), $t_{\rm R} = 29.2$ min (major enan.); **m.p.** = 127 °C; ¹**H** NMR (400 MHz, Chloroform-*d*): $\delta = 7.87 - 7.75$ (m, 2H), 7.43 – 7.27 (m, 10H), 7.26 – 7.20 (m, 3H), 5.82 (d, J = 1.4 Hz, 1H), 5.22 – 5.07 (m, 2H), 4.45 (dd, J = 6.4, 4.2 Hz, 1H), 4.18 (dd, J = 15.6, 4.3 Hz, 1H), 3.33 (ddd, J = 15.7, 6.5, 1.6 Hz, 1H) ppm; ¹³**C** NMR (101 MHz, Chloroform-*d*): $\delta = 166.2$, 165.5, 155.5, 149.4, 141.0, 136.0, 135.6, 133.6, 129.7, 128.9 (2C), 128.6 (2C), 128.5 (2C), 128.1 (3C), 127.4 (2C), 127.0, 125.8 (2C), 101.9, 65.9, 37.9, 30.5 ppm; **IR** (KBr): v = 3028, 3004, 2956, 2893, 2854, 1715, 1655, 1559, 1491, 1467, 1452, 1383, 1347, 1242, 1159, 1099, 1024, 994, 961, 943, 920, 857, 764, 746, 701 cm⁻¹; **HRMS** (ESI+) *m/z*: calcd. for C₂₇H₂₂O₃NS⁺ [M+H]⁺: 440.1315, found: 440.1307.

Further transformations

To a stirred solution of **3a** (41.3 mg, 0.10 mmol, 1.0 eq.) in DMSO (5 ml) DBU (18 μ l, 0.12 mmol, 1.2 eq.) was added in one portion at room temperature. At same temperature reaction was stirred for 24 h. Mixture was diluted with brine (20 ml) and this solution was washed with EtOAc (4 × 10 ml). Organic phase was dried under anhydrous MgSO₄. Mixture was filtered and solvents were evaporated *in vacuo*. Crude product was purified by column chromatography (hex / EtOAc = 15:1), affording the title compound as yellow oil.

Yield **4a** = 77 %; *ee* = 99 %; the enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol – 90:10, $\lambda = 284$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 7.1$ min (minor enan.), $t_{\rm R} = 9.7$ min (major enan.), $[\alpha]_{\rm D}^{20} = 142.6$ (c = 0.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*): $\delta = 7.71 - 7.64$ (m, 1H), 7.41 - 7.33 (m, 5H), 7.33 - 7.29 (m, 4H), 7.26 - 7.10 (m, 4H), 5.22 (d, J = 3.1 Hz, 2H), 5.17 - 5.10 (m, 1H), 4.87 (d, J = 3.8 Hz, 1H), 3.36 (s, 2H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*): $\delta = 169.0$, 143.9, 143.8, 136.4, 135.6, 131.8, 128.7 (2C), 128.6 (2C), 128.3, 128.1 (2C), 128.0 (2C), 126.9, 124.5, 123.3 (2C), 122.1, 121.3, 109.4, 106.0, 66.9, 39.2, 39.1 ppm; IR (KBr): v = 3402, 3064, 3055, 3028, 3004, 2956, 2926, 2851, 1736, 1724, 1694, 1655, 1598, 1589, 1551, 1497, 1437, 1380, 1311, 1257, 1216, 1159, 1072, 1030 cm⁻¹; HRMS (ESI+) *m/z*: calcd. for C₂₆H₂₀NaO₃S [M+Na]⁺: 435.1021, found: 435.1025.

Benzyl (*R*,*E*)-2-(9,9-dioxido-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-b]pyran-2-ylidene)acetate (8)

To a stirred solution of **3a** (82.6 mg, 0.20 mmol, 1.0 eq.) in DCM (4 ml) MCPBA (40 % w/w) (190 mg, 0.44 mmol, 2.2 eq.) was added in one portion at room temperature. At same temperature reaction was stirred for 24 h. Solution was washed with sat. solution of NaHCO₃ (2×2 ml) and brine (2 ml). Organic phase was dried under anhydrous MgSO₄. Mixture was filtered and solvents were evaporated *in vacuo*. Crude product was purified by column chromatography (Hex / EtOAc = 3:1), affording the title compound as yellow solid.

Yield $\mathbf{8} = 82$ %; ee = 99 %; the enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: *n*-heptane/propan-2-ol - 60:40,

 $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 8.1$ min (minor enan.), $t_{\rm R} = 14.3$ min (major enan.), [α]²⁰_D = -78.9 (c = 1.0, CHCl₃); **m.p.** = 174.5 °C; ¹**H NMR** (400 MHz, Chloroform-d): $\delta = 7.64$ (dd, J = 5.6, 3.0 Hz, 1H), 7.37 – 7.28 (m, 10H), 7.23 – 7.21 (m, 2H), 6.85 (dd, J = 5.7, 3.0 Hz, 1H), 5.99 (d, J = 1.4 Hz, 1H), 5.09 (q, J = 12.4 Hz, 2H), 4.13 (dd, J = 6.7, 4.2 Hz, 1H), 3.94 (dd, J = 15.7, 4.3 Hz, 1H), 3.34 (ddd, J = 15.7, 6.6, 1.6 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, Chloroform-d): $\delta = 165.5$, 162.9, 148.9, 138.6, 135.6, 133.8, 132.6, 129.4, 129.24 (2C), 128.6, 128.5 (2C), 128.2, 128.02, 127.99 (2C), 127.3 (2C), 121.8, 121.2, 114.7, 104.8, 66.2, 35.1, 30.6 ppm; **IR** (KBr): v = 3070, 3037, 2666, 2612, 2558, 1718, 1652, 1589, 1580, 1500, 1467, 1449, 1425, 1383, 1350, 1311, 1284, 1266, 1213, 1156, 1096, 1042, 1018, 982, 937, 851, 767, 752, 734, 707, 659 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for for C₂₆H₂₁NaO₃S⁺ [M+H]⁺: 445.1104, found: 445.1104.

Benzyl 2-((2*S*,4*R*)-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2yl)acetateacetate (9)

Solution of **3a** (100 mg, 0.24 mmol, 1.0 eq.) in dry THF (5.0 ml) was degassed (flask was evacuated and refilled with Ar three times) and Pd/C (10%, 25.4 mg, 0.1 eq.) was added. The reaction flask was evacuated again and refilled with H₂ three times. The resulting suspension was stirred 4.5 hrs at 35 °C. (*Note:* Longer reaction time caused debenzylation). The reaction mixture was filtered through short pad of Celite (washed by EtOAc), solvents were evaporated and the residue was purified by column chromatography (hex / EtOAc = 12:1).

Yield 9 = 52 %; ee = 99 %; the enantiomeric excess of product was determined by HPLC using chiral HPLC with an IB column (mobile phase: n-heptane/propan-2-ol - 90:10, $\lambda = 207 \text{ nm}, V = 1.0 \text{ ml/min}, t = 25 \text{ }^{\circ}\text{C}) t_{\text{R}} = 9.2 \text{ min} \text{ (minor enan.)}, t_{\text{R}} = 20.0 \text{ min} \text{ (major enan.)},$ $[\alpha]_{D}^{20} = 110.7 \ (c = 1.0, \text{ CHCl}_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, \text{ Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (400 \text{ MHz}, Chloroform-}d): \delta = 7.60 \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR} \ (dd, J = 7.9, CHCl_{3}); ^{1}\text{H NMR}$ 1.1 Hz, 1H), 7.44 – 7.32 (m, 3H), 7.32 – 7.15 (m, 7H), 7.09 (td, J = 7.6, 1.2 Hz, 1H), 6.99 (td, J = 7.8, 1.1 Hz, 1H), 6.62 (dd, J = 8.0, 1.2 Hz, 1H), 5.20 (s, 2H), 4.77 (dddd, J = 11.3, 7.5, 6.0, 1.2 Hz, 1H), 5.20 (s, 2H), 5.20 (s, 2 1.7 Hz, 1H), 4.23 (dd, J = 10.9, 6.5 Hz, 1H), 2.94 (dd, J = 15.9, 7.2 Hz, 1H), 2.72 (dd, J = 15.8, 6.0 Hz, 1H), 2.47 (ddd, J = 13.9, 6.5, 1.7 Hz, 1H), 1.95 (dt, J = 14.0, 11.1 Hz, 1H) ppm; ¹³C **NMR** (101 MHz, Chloroform-*d*): $\delta = 169.9$, 158.6, 143.1, 137.2, 135.6, 131.3, 128.8 (2C), 128.6 (2C), 128.4, 128.2 (2C), 127.7 (2C), 126.8, 124.0, 122.4, 122.1, 121.7, 110.6, 76.3, 66.7, 40.1, 39.8, 39.6 ppm; **IR** (KBr): *v* = 3933, 3892, 3886, 3881, 3871, 3639, 3821, 3807, 3736, 3712, 3690, 3656, 3650, 3638, 3630, 3620, 3063, 3030, 2951, 2922, 2865, 2360, 2343, 2250, 1949, 1611, 1740, 1736, 1689, 1647, 1637, 1596, 1572, 1550, 1493, 1462, 1455, 1438, 1399, 1376, 1352, 1341, 1307, 1283, 1241, 1210, 1156, 1103, 1073, 1030, 1022, 980, 940, 909, 846, 756, 734, 699 cm⁻¹; **HRMS** (ESI+) m/z: calcd. for C₂₆H₂₃O₃S⁺ [M+H]⁺: 415.1362, found: 415.1365.

Benzyl (*R,E*)-2-(6-(4-methoxyphenyl)-4-phenyl-3,4-dihydro-2*H*benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (10)

To a stirred suspension of **3e** (19.5 mg, 0.04 mmol, 1.0 eq.), boronic acid (7.4 mg, 0.05 mmol, 1.2 eq.) and KOAc (15.7 mg, 0.16 mmol, 4.0 eq.) in anhydrous and deggased 1,4-dioxane (0.4 ml) was Pd(dppf)Cl₂ (2.9 mg, 0.004 mmol, 0.1 eq.) added in one portion. Reaction mixture was stirred under Ar atmosphere at 105 °C for 24 h. Resulting suspension was filtered through short pad of silica gel (hex / EtOAc – 7:1). Solvents were evaporated *in vacuo*. Crude product was purified by column chromatography (hex / EtOAc = 15:1), affording the title compound as white solid. (*Note:* The title compound readily crystallized from boiling hept / *i*-PrOH – 9:1)

Yield **10** = 48 %; *ee* = 90 %; the enantiomeric excess of product was determined by HPLC using chiral HPLC with an IA column (mobile phase: *n*-heptane/propan-2-ol – 97:3, $\lambda = 256$ nm, V = 1.0 ml/min, t = 25 °C) $t_{\rm R} = 18.6$ min (major enan.), $t_{\rm R} = 9.7$ min (minor enan.); **m.p.** = 172.7 °C; $[\alpha]_{\rm D}^{20} = 122.6$ (c = 0.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-d): $\delta = 7.73$ (dd, J = 8.3, 0.6 Hz, 1H), 7.43 (dd, J = 8.3, 1.8 Hz, 1H), 7.41 – 7.19 (m, 13H), 6.94 (d, J = 8.7 Hz, 2H), 5.84 (d, J = 1.4 Hz, 1H), 5.12 (q, J = 12.5 Hz, 2H), 4.43 (dd, J = 6.4, 4.4 Hz, 1H), 4.11 (dd, J = 15.4, 4.5 Hz, 1H), 3.85 (s, 3H), 3.40 (ddd, J = 15.4, 6.5, 1.6 Hz, 1H) ppm; ¹³C NMR (101 MHz, Chloroform-d) $\delta = 166.3$, 165.9, 159.1, 154.0, 141.3, 137.9, 136.7, 136.1, 133.7, 130.1, 128.7 (2C), 128.5 (2C), 128.2 (2C), 128.1, 128.0 (2C), 127.5 (2C), 127.1, 122.7, 122.6, 118.9, 114.2 (2C), 112.5, 101.7, 65.8, 55.3, 36.1, 31.1 ppm; IR (KBr): v = 3025, 2962, 2932, 2839, 1715, 1658, 1610, 1589, 1539, 1494, 1449, 1356, 1299, 1272, 1254, 1210, 1186, 1156, 1096, 1039, 1024, 988, 961 cm⁻¹; HRMS (ESI+) m/z: calcd. for C₃₃H₂₆NaO₄S [M+Na]⁺: 541.1439, found: 541.1444.

Crystallographic data for 3a and 6b

Crystallographic data for **3a** and **6b** were collected on Bruker D8 VENTURE Kappa Duo PHOTON100 by IµS micro-focus sealed tube either of MoK α (λ = 0.71073) (**3a**) or Cu K α (λ = 1.54178 Å) (**6b**) at a temperature of 120(2) K. The structures were solved by direct methods (XT^{39a})⁹ and refined by full matrix least squares based on F^2 (SHELXL2018^{39b}).¹⁰ The hydrogen atoms on carbon were fixed into idealized positions (riding model) and assigned temperature factors H_{iso}(H) = 1.2 U_{eq}(pivot atom). The absolute structure determination was based on anomalous dispersion of sulphur atom⁴⁰.

Crystal data for **3a**: C₂₆H₂₀O₃S, $M_r = 412.48$; Orthorhombic, $P \ 2_1 \ 2_1 \ 2_1 \ (No \ 19)$, $a = 7.9759 \ (4)$ Å, $b = 16.1628 \ (8)$ Å, $c = 31.7213 \ (15)$ Å, $V = 4089.3 \ (3)$ Å³, Z = 8, $D_x = 1.340$ Mg m⁻³, light yellow bar of dimensions $0.37 \times 0.20 \times 0.11$ mm, multi-scan absorption correction ($\mu = 0.18 \text{ mm}^{-1}$) $T_{\text{min}} = 0.91$, $T_{\text{max}} = 0.98$; a total of 33870 measured reflections ($\theta_{\text{max}} = 27.6^{\circ}$), from which 9441 were unique ($R_{\text{int}} = 0.031$) and 8559 observed according to the $I > 2\sigma(I)$ criterion. The refinement converged ($\Delta/\sigma_{\text{max}} = 0.001$) to R = 0.038 for observed reflections and w $R(F^2) = 0.089$, GOF = 1.09 for 541 parameters and all 9441 reflections. The final difference map displayed no peaks of chemical significance ($\Delta\rho_{\text{max}} = 0.28$, $\Delta\rho_{\text{min}} - 0.30 \text{ e.Å}^{-3}$). Absolute structure parameter (Flack⁴⁰) -0.02(2).

Crystal data for **6b**: C₂₇H₂₁NO₃S, $M_r = 439.51$; Orthorhombic, $P \ 2_1 \ 2_1 \ 2_1 \ (No \ 19)$, a = 5.7472(2) Å, b = 16.9120 (6) Å, c = 22.0104 (8) Å, V = 2139.34 (13) Å³, Z = 4, $D_x = 1.365$ Mg m⁻³, colourless bar of dimensions $0.40 \times 0.06 \times 0.05$ mm, multi-scan absorption correction ($\mu = 1.59$ mm⁻¹) $T_{min} = 0.77$, $T_{max} = 0.93$; a total of 14933 measured reflections ($\theta_{max} = 66.6^{\circ}$), from which 3770 were unique ($R_{int} = 0.026$) and 3662 observed according to the $I > 2\sigma(I)$ criterion. The refinement converged ($\Delta/\sigma_{max} = 0.001$) to R = 0.026 for observed reflections and w $R(F^2) = 0.063$, GOF = 1.08 for 289 parameters and all 3770 reflections. The final difference map displayed no peaks of chemical significance ($\Delta\rho_{max} = 0.13$, $\Delta\rho_{min} -0.24$ e.Å⁻³). Absolute structure parameter (Flack⁴⁰) -0.008(5).

⁹ a) SHELXT: G. M. Sheldrick, Acta Cryst., 2015, A71, 3; b) SHELXL: G. M. Sheldrick, Acta Cryst., 2015, C71,

¹⁰ S. Parsons, H. D. Flack and T. Wagner, Acta Cryst., 2013, B69, 249.

S1a Figure S2. View on the one of two symmetrically independent molecule of (R)-3-3a. Displacement ellipsoids are drawn on 50% probability level. The most important difference between A and B molecules is in the conformation of pyrane rings.

Figure S3. View on molecule of (R)-3-6b. Displacement ellipsoids are drawn on 50% probability level.

Figure S4. View on the two overlapping molecules of 3a. The fit as based on atoms S1, C4, C5, C14, C15, C16, C17, C18, C19.

X-ray crystallographic data have been deposited with the Cambridge Crystallographic Data Centre under deposition number CCDC 1916993 and CCDC 1916994 for **3a** and **6b**, respectively and can be obtained free of charge from the Centre via its website (www.ccdc.cam.ac.uk/getstructures).

3-Benzylidenebenzo[b]thiophen-2(3H)-one (1a) – mixture of E/Z isomers

(*E*)-3-Benzylidenebenzo[*b*]thiophen-2(3*H*)-one (1a) – pure *E* isomer

S46

3-Benzylidene-7-bromobenzo[*b*]thiophen-2(3*H*)-one (1g)

3-(4-Chlorobenzylidene)benzo[b]thiophen-2(3H)-one (1h)

S50

3-(4-(Trifluoromethyl)benzylidene)benzo[b]thiophen-2(3H)-one (1j)

3-(4-Nitrobenzylidene)benzo[b]thiophen-2(3H)-one (1k)

3-(4-Methoxybenzylidene)benzo[b]thiophen-2(3H)-one (11)

3-(4-Methylbenzylidene)benzo[b]thiophen-2(3H)-one (1m)

3-(4-Bromobenzylidene)benzo[b]thiophen-2(3H)-one (1n)

3-(3-Bromobenzylidene)benzo[*b*]thiophen-2(3*H*)-one (10)

3-(2-Bromobenzylidene)benzo[b]thiophen-2(3H)-one (1p)

3-(Furan-3-ylmethylene)benzo[b]thiophen-2(3H)-one (1q)

S60

Benzyl (R,E)-2-(4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-

Benzyl (R,E)-2-(5-chloro-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-

Benzyl (*R*,*E*)-2-(6-bromo-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2vlidene)acetate (3e)

50000 Ph ,CO₂Bn 45000 Br S 40000 ſ 1 ſ 35000 30000 - 25000 20000 - 15000 - 10000 5000 - 0 F-66'0 2.064 1-76.0 2.01-1.01 Hee.0 1.03 -5000 5.0 f1 (ppm) L0:001 9.5 9.0 8.5 8.0 . 7.5 7.0 6.5 . 6.0 . 5.5 4.5 . 4.0 . 3.5 3.0 2.5 2.0 1.5 1.0 0.5 . 0.0 $\lesssim \frac{166.20}{165.49}$ $\begin{array}{c} 141.10\\ 136.01\\ 135.05\\ 133.00\\ 1238.82\\ 128.82\\ 128.82\\ 128.82\\ 128.16\\ 128.16\\ 128.16\\ 128.16\\ 128.16\\ 127.41\\ 127.41\\ 127.41\\ 127.41\\ 127.41\\ 127.41\\ 127.41\\ 126.55\\ 127.41\\ 126.55\\ 126.56$ scp38901.2.fid carbon - 153.85 - 112.10 --- 65.93 2300 2200 2100 2000 Ph 1900 1800 CO₂Bn 1700 B 1600 \cap 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 - 0 -100 -200 - -300 190 100 f1 (ppm) 70 60 50 40 30 20 10 0 180 170 160 150 140 130 120 110 90 80

Benzyl (*R,E*)-2-(4-(4-chlorophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3h)

Benzyl (R,E)-2-(4-(4-cyanophenyl)-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-

Benzyl (R,E)-2-(4-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-benzo[4,5]thieno[2,3-

Benzyl (*R*,*E*)-2-(4-(4-nitrophenyl)-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-ylidene)acetate (3k)
Benzyl (*R*,*E*)-2-(4-(4-methoxyphenyl)-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-ylidene)acetate (3l)

Benzyl (*R*,*E*)-2-(4-(*p*-tolyl)-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-ylidene)acetate (3m)

Benzyl (*R*,*E*)-2-(4-(4-bromophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3n)

Benzyl (*R*,*E*)-2-(4-(3-bromophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (30)

Benzyl (*R*,*E*)-2-(4-(2-bromophenyl)-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3p)

Benzyl (*R*,*E*)-2-(4-(furan-3-yl)-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-ylidene)acetate (3q)

Benzyl (*S*,*E*)-2-(4-propyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-ylidene)acetate (3r)

Benzyl (*R,E*)-2-(4-cyclohexyl-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2ylidene)acetate (3s)

Methyl (R,E)-2-(4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[2,3-b]pyran-2-

S82

Benzyl (*S*,*E*)-2-(4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[3,2-*b*]pyran-2-ylidene)acetate (6a)

Benzyl (*R,E*)-2-(2,7-diphenyl-6,7-dihydro-5*H*-pyrano[2,3-*d*]thiazol-5-ylidene)acetate (6b)

Benzyl (*R*,*E*)-2-(2,7-diphenyl-6,7-dihydro-5*H*-pyrano[3,2-*d*]thiazol-5-ylidene)acetate (6c)

Benzyl (*R,E*)-2-(9,9-dioxido-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-b]pyran-2-ylidene)acetate (8)

Benzyl 2-((2*S*,4*R*)-4-phenyl-3,4-dihydro-2*H*-benzo[4,5]thieno[2,3-*b*]pyran-2-yl)acetateacetate (9)

Chiral HPLC

ee = 99 %

Total

207905

3520216

mobile phase: heptane / *i*-PrOH – 97:3 $\lambda = 232 \text{ nm}, V = 1.0 \text{ ml/min}, t = 25 \text{ °C}$ for **3b**: $t_{\text{R}} = 10.0 \text{ min}$ (minor), $t_{\text{R}} = 10.7 \text{ min}$ (major).

^{🗖 🚸} Results View - Peak Table

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,025	49,564	3342952	231084	0,000000		9,451	10,453	49,564
2	10,799	50,436	3401822	216512	0,000000	SV	10,453	12,256	50,436
Total		100,000	6744774	447596					100,000

Method A:

Peak Table Compound Group Calibration Curve

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	9,937	6,924	540734	37573	0,000000		9,525	10,272	6,924
2	10,669	93,076	7268872	460271	0,000000	V	10,272	12,288	93,076
Total		100,000	7809606	497844					100,000

ee = 86 %

Peak Table Compound Group Calibration Curve

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,310	5,443	225919	16091	0,000000	M	9,963	10,635	5,443
2	11,177	94,557	3924839	243481	0,000000		10,720	12,555	94,557
Total		100,000	4150758	259572					100,000

ee = 89 %

mobile phase: heptane / *i*-PrOH – 90:10 $\lambda = 280$ nm, V = 1.0 ml/min, t = 25 °C μ CO₂Bn for **3c**: $t_{\rm R} = 10.2$ min (major), $t_{\rm R} = 10.9$ min (minor).

	compound Croop	Combration Carre							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,625	90,683	4061820	250295	0,000000	M	10,165	10,997	90,683
2	11,029	9,317	417327	34036	0,000000	M	10,997	11,413	9,317
Total		100,000	4479146	284331					100,000

ee = 80 %

mobile phase: heptane / *i*-PrOH – 97:3 $\lambda = 234$ nm, V = 1.0 ml/min, t = 25 °C for **3e**: t_R = 10.5 min (minor), t_R = 11.4 min (major).

Peak Table Compound Group Calibration Curve

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,476	49,704	1900759	122396	0,000000		9,931	10,976	49,704
2	11,373	50,296	1923377	113144	0,000000	V	10,976	12,576	50,296
Total		100,000	3824135	235540					100,000
<u> </u>									

Method A:

🗖 🚸 Results View - Peak Table

|--|

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,390	5,325	765053	50757	0,000000		9,909	10,773	5,325
2	11,235	94,675	13602938	821097	0,000000	V	10,773	13,259	94,675
Total		100,000	14367991	871854					100,000

ee = 89 %

Method B:

Peak# Ret. Time Conc Area Height Similarity Index Mark Peak Start Peak End Area% 10,453 11,341 5,244 94,756 100,000 128347 0,000000 0,000000 5,244 94,756 100,000 8644 10,037 10,784 10,784 12,480 2319287 2447633 139863 148508 Total

ee = 90 %

mobile phase: heptane / i-PrOH – 97:3 λ = 206 nm, V= 1.0 ml/min, t= 25 °C CO₂Bn for **3f**: $t_{\rm R}$ = 10.1 min (minor), $t_{\rm R}$ = 11.0 min (major).

Max Intensity : 278 461 Time 14,650 Inten. -13.736 nAU 206nm,4nm 300 200-100-÷ € Q 0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 0,0 1,0

🗖 <> Results View - Peak Table

Peak Tab	e Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,065	49,995	4307936	289464	0,000000		9,643	10,571	49,995
2	10,949	50,005	4308852	263565	0,000000	V	10,571	11,659	50,005
Total		100,000	8616787	553028					100,000

Method A:

Book Table Count of Call Call

Peak Table	Compound Group Calibration Curve										
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%		
1	10,057	8,372	278214	19659	0,000000	M	9,781	10,539	8,372		
2	10,938	91,628	3044992	186617	0,000000	M	10,549	12,395	91,628		
Total		100,000	3323206	206276					100,000		

ee = 83 % **Method B:**

🗖 🗘 Results View - Peak Table

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,302	6,786	179545	10733	0,000000		9,877	10,603	6,786
2	11,239	93,214	2466112	146441	0,000000	M	10,869	12,619	93,214
Total		100,000	2645657	157174					100,000

ee = 87 %

mobile phase: heptane / *i*-PrOH – 97:3 λ = 206 nm, *V*= 1.0 ml/min, *t*= 25 °C for **3g**: *t*_R= 8.0 min (minor), *t*_R= 8.8 min (major).

	Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
	1	7,962	49,815	2755099	242991	0,000000	М	7,659	8,533	49,815
	2	8,816	50,185	2775607	217228	0,000000	M	8,533	9,440	50,185
	Total		100,000	5530706	460219					100,000

Method A:

🗖 🛟 Results View - Peak Table

Peak Table Comp	ound Group	Calibration Curve	
-----------------	------------	-------------------	--

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	7,969	6,364	399627	36391	0,000000	М	7,733	8,320	6,364
2	8,822	93,636	5879459	452664	0,000000	M	8,341	10,197	93,636
Total		100,000	6279085	489055					100,000

ee = 87 %

K> Results View - Peak Table

	FEAK TADIE	Compound Group	Calibration Curve							
	Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
	1	8,150	5,266	223647	19817	0,000000	M	7,947	8,480	5,266
	2	9,025	94,734	4023104	306418	0,000000	M	8,565	9,888	94,734
	Total		100,000	4246751	326235					100,000
ľ										

ee = 90 %

mobile phase: heptane / *i*-PrOH – 90:10 λ = 254 nm, V= 1.0 ml/min, t= 25 °C for **3h**: t_R= 6.5 min (minor), t_R= 14.0 min (major).

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	6,465	3,492	113605	12809	0,000000	M	6,240	6,837	3,492
2	14,136	96,508	3139295	129526	0,000000	M	13,707	15,392	96,508
Total		100,000	3252900	142335					100,000

ee = 93 %

mobile phase: heptane / *i*-PrOH – 80:20 λ = 254 nm, V= 1.0 ml/min, t= 25 °C for **3i**: t_{R} = 10.3 min (minor), t_{R} = 25.4 min (major).

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,266	11,031	297012	19158	0,000000	М	10,005	10,784	11,031
2	25,498	88,969	2395590	54843	0,00000	М	24,565	27,851	88,969
Total		100,000	2692603	74001					100,000

ee = 78 %

mobile phase: heptane / *i*-PrOH – 90:10 λ = 254 nm, V= 1.0 ml/min, t= 25 °C for **3j**: t_R = 7.0 min (minor), t_R = 17.8 min (major).

0.0 Results View - Peak Table

25

50

7'5

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	6,638	12,709	806556	87911	0,000000	M	6,357	7,136	12,709
2	17,290	87,291	5539695	188847	0,000000	M	16,725	18,933	87,291
Total		100,000	6346252	276758					100,000

ee = 75 %

mobile phase: heptane / *i*-PrOH – 80:20 λ = 254 nm, V= 1.0 ml/min, t= 25 °C for **3k**: t_R= 9.8 min (minor), t_R= 24.2 min (major).

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	10,971	12,551	455840	27436	0,000000	M	10,485	11,968	12,551
2	26,421	87,449	3176010	71558	0,000000	M	25,472	28,789	87,449
Total		100,000	3631850	98995					100,000

ee = 75 %

Method B:

ee = 73 %

ee = 85 %

mobile phase: heptane / *i*-PrOH – 90:10 λ = 254 nm, V= 1.0 ml/min, t= 25 °C for **3m**: t_R= 5.5 min (minor), t_R= 8.9 min (major).

> Max Intensity : 211 462 0,742 Inten. -0,032

> > 14,0

min

ime

12,0

13,0

4,0

5,0

6,0

3,0

\diamond	Results View - Peak	Table

100-

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	5,461	49,993	1616336	211514	0,000000	М	5,195	6,016	49,993
2	8,782	50,007	1616813	105928	0,000000	M	8,384	9,771	50,007
Total		100,000	3233149	317441					100,000

7,0

8,0

10,0

9,0

11,0

Method A:

🗖 🗘 Results View - Peak Table

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	5,460	5,322	321594	43498	0,000000	M	5,269	5,739	5,322
2	8,745	94,678	5721633	375382	0,000000	M	8,427	9,739	94,678
Total		100,000	6043227	418879					100,000

ee = 89 %

Method B:

Peak Table	Compound	Group	Calibration Curve

F	Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1		5,709	5,344	148413	18206	0,000000	M	5,472	6,112	5,344
2		9,052	94,656	2628924	172925	0,000000	M	8,725	10,027	94,656
T	otal		100,000	2777338	191131					100,000

ee = 89 %

mobile phase: heptane / *i*-PrOH – 90:10 λ = 254 nm, V= 1.0 ml/min, t= 25 °C for **3n**: t_R= 7.2 min (minor), t_R= 15.2 min (major).

Peak Table Compound Group Calibration Curve Peak# Ret. Time Conc. Height Similarity Index Mark Peak Start Peak End Area 0,000000 0,000000 7,061 15,285 7,904 17,611 7,45 4,832 64065 6196 Ν M 16,036 95 168 1261775 47715 100,000 1325840 53912 Tota

ee = 90 %

🗖 🗘 Results View - Peak Table

Area%

4,832

95 168

100,000

mobile phase: heptane / *i*-PrOH – 80:20 λ = 254 nm, V= 1.0 ml/min, t = 25 °C for **30**: t_R= 6.2 min (minor), t_R= 12.4 min (major).

Chromatogram View Peak
Channel
Extract

🗖 🗘 Results View - Peak Table

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	6,404	50,026	798540	87782	0,000000		6,176	7,125	50,026
2	12,411	49,974	797701	41256	0,000000	S	11,957	13,589	49,974
Total		100,000	1596241	129038					100,000

Method A:

Chromatogram View
Peak
Channel
Extract

r 125-	nAU 254nm,4nm						Time 5,067 -	Max Intensity : 61 165 Inten0,055
100-								
75-	4 4 4 							
50-					/			
25-						}		
0-			<u></u>			<u> </u>		
	125- 100- 75- 50- 25- 0-	MAU 125-254nm.4nm 100- 75- 50- 25- 0-	125- 254nm.4nm 100- 75- 50- 25- 0- 0- 	125- <u>254nm,4nm</u>] 100- 75- 50- 25- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	125- 25- 50- 25- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	mAU 125-254nm.4nm] 100- 75- 50- 25- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	mAU 125-254nm_4nm] 100- 75- 50- 25- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	Time - 5,067

🗖 🗘 Results View - Peak Table

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	6,408	7,624	97840	11003	0,000000	М	6,197	6,869	7,624
2	12,393	92,376	1185541	61414	0,000000	M	11,936	13,557	92,376
Total		100,000	1283381	72417					100,000

ee = 85 %

Method B:

Ι.		Compound Group	Calibration Carve							
	Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
	1	5,819	6,879	146503	18006	0,000000	M	5,611	6,112	6,879
	2	12,017	93,121	1983271	99188	0,000000	M	11,541	13,109	93,121
	Total		100,000	2129774	117194					100,000

ee = 86 %

mobile phase: heptane / *i*-PrOH – 97:3 λ = 254 nm, V= 1.0 ml/min, t = 25 °C for **3p**: t_R= 6.1 min (major), t_R= 7.7 min (minor).

ee = 88 %

mobile phase: heptane / *i*-PrOH – 90:10 λ = 254 nm, *V*= 1.0 ml/min, *t*= 25 °C for **3q**: *t*_R= 6.3 min (minor), *t*_R= 10.6 min (major).

Area 4
17,077
82,923
100,000
0 5

ee = 66 %

mobile phase: heptane / *i*-PrOH – 90:10 λ = 254 nm, V= 1.0 ml/min, t= 25 °C for **3r**: t_R= 4.6 min (minor), t_R= 5.9 min (major).

ee = 89 %

mobile phase: heptane / *i*-PrOH – 97:3 λ = 293 nm, V= 1.0 ml/min, t= 25 °C for **3s**: t_{R} = 5.0 min (major), t_{R} = 6.0 min (minor).

Peak Table Compound Group Calibration Curve

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	4,963	50,246	1606823	226736	0,000000	S	4,672	5,653	50,246
2	5,893	49,754	1591097	193411	0,000000	V	5,653	6,411	49,754
Total		100,000	3197919	420147					100,000

Method A:

🗖 <> Results View - Peak Table

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	5,059	94,568	2133166	294073	0,000000		4,832	5,813	94,568
2	6,038	5,432	122519	14363	0,000000	V	5,813	6,496	5,432
Total		100,000	2255685	308437					100,000

ee = 89 %

mobile phase: heptane / *i*-PrOH – 90:10 λ = 206 nm, V= 1.0 ml/min, t= 25 °C for **3t**: t_R= 5.0 min (minor), t_R= 9.1 min (major).

- -----

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	4,951	50,084	828835	124713	0,000000	S	4,811	5,504	50,084
2	9,054	49,916	826055	68233	0,000000		8,779	9,643	49,916
Total		100,000	1654890	192946					100,000

Method A:

Peak Table Compound Group Calibration Curve

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	4,937	5,530	102547	15725	0,000000		4,821	5,195	5,530
2	8,983	94,470	1751914	145774	0,000000	S	8,661	9,760	94,470
Total		100,000	1854461	161499					100,000

ee = 89 %

Method B:

Peak Table Compound Group Calibration Cur

	compound Group	Combradorr Carve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	5,071	1,146	83387	13912	0,000000	М	4,981	5,195	1,146
2	9,291	98,854	7192132	561797	0,000000	M	8,928	10,315	98,854
Total		100,000	7275520	575709					100,000

ee = 98 %

100----

0

00

Results View - Peak Table

10

2,0

3,0

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	6,177	98,811	2176247	250242	0,000000	M	5,941	6,731	98,811
2	7,218	1,189	26197	2726	0,000000	M	7,040	7,509	1,189
Total		100,000	2202444	252968					100,000

6,0

9,0

10,0

11,0

8,0

7,0

12,0 min

5,0

4,0

ee = 98 %

mobile phase: heptane / *i*-PrOH – 80:20 λ = 208 nm, V= 1.0 ml/min, t= 25 °C for **6b**: t_R= 8.7 min (major), t_R= 10.9 min (minor).

Peak Table Compound Group Calibration Curv

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	8,718	49,993	745090	52047	0,000000		8,405	9,344	49,993
2	10,891	50,007	745299	38330	0,000000	S	10,517	12,107	50,007
Total		100,000	1490388	90377					100,000

Method A:

Peak Table Compound Group Calibration Curve

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	8,666	98,742	6286082	464362	0,000000	М	8,331	9,397	98,742
2	10,914	1,258	80109	4338	0,000000		10,496	11,499	1,258
Total		100,000	6366192	468700					100,000

ee = 98 %

Method B:

Peak Table Compound Group Calibration Curve

Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
8,608	99,626	2682007	196436	0,000000		8,288	9,664	99,626
10,729	0,374	10061	597	0,000000		10,443	11,115	0,374
	100,000	2692068	197033					100,000
	Ret. Time 8,608 10,729	Ret. Time Conc. 8.608 99.626 10,729 0,374 100,000 100,000	Ret. Time Conc. Area 8.608 99,626 2682007 10,729 0,374 10061 100,000 2692068	Ret. Time Conc. Area Height 8.608 99.626 2682007 196436 10,729 0.374 10061 597 100,000 2692068 197033	Ret. Time Conc. Area Height Similarity Index 8.608 99,626 2682007 196436 0,00000 10.729 0,374 10061 597 0,000000 100,000 2692068 197033 197033	Ret. Time Conc. Area Height Similarity Index Mark 8.608 99,626 2682007 196436 0,000000 10,00000 10,729 0,374 10061 597 0,000000 10 100,000 2692068 197033	Ret. Time Conc. Area Height Similarity Index Mark Peak Start 8.608 99,626 2682007 196436 0,000000 8,288 10,729 0,374 10061 597 0,000000 10,443 100,000 2692068 197033	Ret. Time Conc. Area Height Similarity Index Mark Peak Start Peak End 8.608 99,626 2682007 196436 0,00000 8,288 9,664 10.729 0,374 10061 597 0,000000 10,443 11,115 100,000 2692068 197033

ee = 99 %

mobile phase: heptane / *i*-PrOH – 80:20 λ = 210 nm, V= 1.0 ml/min, t= 25 °C for **6c**: t_R= 5.9 min (minor), t_R= 29.2 min (major).

🗖 🚸 Results View - Peak Table

Peak	Table	Compound Group	Calibration Curve							
Pe	ak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1		5,887	50,393	5715740	673818	0,000000	M	5,664	6,784	50,393
2		29,158	49,607	5626515	116521	0,000000		28,139	31,488	49,607
Tota	al		100,000	11342256	790339					100,000

Method A:

Chromatogram View
Peak
Peak
Channel
Extract

Results View - Peak Table

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	5,881	6,581	786825	92650	0,000000	M	5,696	6,283	6,581
2	29,197	93,419	11168539	226224	0,000000		28,213	31,829	93,419
Total		100,000	11955363	318873					100,000
-	_								

ee = 87 %

Method B:

Chromatogram View Peak \star Channel 🚺 Extract Max Intensity: 86 105 Inten. -1,268 210nm,4nm 150-100-50-0-0.0 2.5 5.0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0 32,5 35,0 37,5 min

Results View - Peak Table Peak Table Compound Crown Collingation

L	reak table	Compound Group	Calibration Curve							
	Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
	1	5,887	0,980	41764	4925	0,000000	М	5,728	6,176	0,980
	2	29,172	99,020	4221420	87581	0,000000	M	28,032	31,733	99,020
	Total		100,000	4263184	92506					100,000

ee = 98 %

mobile phase: heptane / *i*-PrOH – 90:10 λ = 284 nm, V= 1.0 ml/min, t= 25 °C for **4a**: t_R= 7.1 min (minor), t_R= 9.7 min (major).

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	7,108	49,965	183220	18999	0,000000		6,859	7,669	49,965
2	9,652	50,035	183476	13930	0,000000		9,344	10,336	50,035
Total		100,000	366695	32928					100,000

Peak Table Compound Group Calibration Curve

Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
7,130	0,501	6164	679	0,000000		6,976	7,392	0,501
9,668	99,499	1223673	92218	0,000000		9,365	10,699	99,499
	100,000	1229837	92898					100,000
	Ret. Time 7,130 9,668	f Ret. Time Conc. 7,130 0,501 9,668 99,499 100,000	Ret. Time Conc. Area 7,130 0,501 6164 9,668 99,499 1223673 100,000 1229837	r Ret. Time Conc. Area Height 7,130 0,501 6164 679 9,668 99,499 1223673 92218 100,000 1229837 92898	f Conc. Area Height Similarity Index 7,130 0,501 6164 679 0,000000 9,668 99,499 1223673 92218 0,000000 100,000 1229837 92898 100,000 1229837	Ret. Time Conc. Area Height Similarity Index Mark 7,130 0.501 6164 679 0,000000 9,668 99,499 1223673 92218 0,000000 100.000 1229837 92898 92898 9888	Ret. Time Conc. Area Height Similarity Index Mark Peak Start 7,130 0,501 6164 679 0,000000 6,976 9,668 99,499 1223673 92218 0,000000 9,365 100,000 1229837 92898	Ret. Time Conc. Area Height Similarity Index Mark Peak Start Peak End 7,130 0,501 6164 679 0,000000 6,976 7,332 9,668 99,499 1223673 92218 0,000000 9,365 10,699 100,000 1229837 92898 0 0 106,000 10,699

ee = 99 %

mobile phase: heptane / i-PrOH – 60:40 $\lambda = 254$ nm, V = 1.0 ml/min, t = 25 °C for 8: t_{R} = 8.1 min (minor), t_{R} = 10.9 min (major).

50148

100,000

974896

Chromatogram View Peak 💶 🕨 Channel 💶 Extract mAU 254nm,4nm Max Intensity : 21 268 8,909 Inten. 0,088 Time 30-20-10-0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 0,0
 Image: Second State
 Results View - Peak Table
 Peak Table Compound Group Calibration Curve Ret. Time Peak# Mark Peak Start Conc. Area Height Similarity Index Peak End Area% 0,000000 0,240 99,760 0,240 99,760 8,161 14,312 1541 130 21174 7,979 13,739 8,373 15,797 640656 100,000 642197 21304 100,000 Total

ee = 99%

Total

mobile phase: heptane / i-PrOH – 90:10 λ = 207 nm, V= 1.0 ml/min, t= 25 °C for **9**: t_{R} = 9.2 min (minor), t_{R} = 20.0 min (major).

🗖 🗘 Results View - Peak Table

Peak Table Compound Group Calibration Curve

Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	9,248	50,716	2262539	175937	0,000000	S	8,907	11,061	50,716
2	20,010	49,284	2198668	77127	0,000000	SV	19,317	21,472	49,284
Total		100,000	4461208	253064					100,000

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	9,246	0,455	26840	2087	0,000000		8,885	9,483	0,455
2	20,005	99,545	5875411	206800	0,000000	S	19,328	21,483	99,545
Total		100,000	5902251	208887					100,000

ee = 99 %

mobile phase: heptane / *i*-PrOH – 97:3 λ = 256 nm, V= 1.0 ml/min, t= 25 °C for **10**: t_R= 18.6 min (major), t_R= 9.7 min (minor).

Peak Table	Compound Group	Calibration Curve							
Peak#	Ret. Time	Conc.	Area	Height	Similarity Index	Mark	Peak Start	Peak End	Area%
1	18,605	94,890	2528726	87873	0,000000		17,717	20,224	94,890
2	29,395	5,110	136181	3099	0,000000		28,555	30,421	5,110
Total		100,000	2664907	90973					100,000

ee = 90 %