Stereoselective defluorinative carboxylation of gem-difluoroalkenes with carbon dioxide

Shi-Liang Xie,a Xiao-Yuan Cui,a Xiao-Tong Gao,a Feng Zhou,*a,b Hai-Hong Wu,*a and Jian Zhou*a,b

a Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China.
E-mail: fzhou@chem.ecnu.edu.cn; hhwu@chem.ecnu.edu.cn

b Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China.

Contents

Page
1. General information 2
2. General procedure for the defluorinative carboxylation 3
3. Characterization data 4-10
4. Product elaboration 11-12
5. 1H NMR, 19F NMR and 13C NMR spectra 13-98
1. General information

Reactions were monitored by thin layer chromatography using UV light or I$_2$ to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. 1H, 13C and 19F NMR spectra were obtained using a Bruker DPX-400 spectrometer. Chemical shifts were reported in ppm with TMS as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

CuI (anhydrous, 99.995% trace metals basis) was purchased from Aldrich. Xantphos, LiO'Bu and B$_2$Pin$_2$ was purchased from J&K Scientific. Anhydrous DMA was prepared by first pre-dried with anhydrous Na$_2$SO$_4$, then distilled from CaSO$_4$ into 4Å molecular sieves. CO$_2$ (99.999%) was commercially available and was dried by conc. H$_2$SO$_4$. The substrates 1a-d$^{[1]}$, 3a-d$^{[1]}$, 5a-d$^{[2]}$ and 7a-d$^{[3]}$ were synthesized according to literature methods.

List of abbreviation:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Chemical name</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N, N-Dimethyl formamide</td>
<td>DMF</td>
</tr>
<tr>
<td>2</td>
<td>N, N-Dimethyl acetamide</td>
<td>DMA</td>
</tr>
<tr>
<td>3</td>
<td>Petroleum ether</td>
<td>PE</td>
</tr>
<tr>
<td>4</td>
<td>Ethyl acetate</td>
<td>EtOAc</td>
</tr>
<tr>
<td>5</td>
<td>Methanol</td>
<td>MeOH</td>
</tr>
</tbody>
</table>

2. General procedure for the defluorinative carboxylation

In a glovebox under argon, a flame-dried Schlenk tube (10 mL) fitted with a stirring bar was charged with CuI (7.6 mg, 0.04 mmol), Xantphos (23.1 mg, 0.04 mmol), LiOtBu (96.1 mg, 1.2 mmol), bis(pinacolato)diboron (182.8 mg, 0.72 mmol) and gem-difluoroalkenes (0.4 mmol). The Schlenk tube was taken out of the glovebox and then evacuated and back-filled with CO₂ for three times. Subsequently, freshly anhydrous DMA (2.0 mL) was added via syringe under a positive CO₂ atmosphere. Once added, the reaction tube was sealed at atmospheric pressure of CO₂ (1 atm). The mixture was stirred at 60 °C for 24 h. After the tube was cooled to room temperature, the reaction mixture was diluted with EtOAc (3.0 mL), quenched by 2 N HCl (3.0 mL) and then extracted by EtOAc (3×5 mL). Finally, the combined organic phases were dried over Na₂SO₄, filtered and concentrated \textit{in vacuo}. The residue was purified by a silica gel flash column chromatography (petroleum ether/EtOAc 10/1, then EtOAc/MeOH 20/1 with 0.1% AcOH added) to give the desired product.
3. Characterization Data

84.0 mg, 97% yield, white solid. 1H NMR (400 MHz, DMSO-d_6): δ 8.26 (s, 1H), 7.99-7.93 (m, 3H), 7.84-7.81 (m, 1H), 7.61-7.55 (m, 2H), 7.20 (d, $J = 36.4$ Hz, 1H); 13C NMR (100 MHz, DMSO-d_6): δ 162.44 (d, $J = 34.4$ Hz, 1C), 147.87 (d, $J = 263.9$ Hz, 1C), 133.52 (d, $J = 1.9$ Hz, 1C), 133.22, 130.79 (d, $J = 7.8$ Hz, 1C), 129.01 (d, $J = 4.2$ Hz, 1C), 128.92 (d, $J = 2.5$ Hz, 1C), 128.04, 127.86, 127.23, 127.10 (d, $J = 8.1$ Hz, 1C), 117.13; 19F NMR (376 MHz, DMSO-d_6): δ -123.50; HRMS (ESI): Exact mass calcd for C$_{13}$H$_8$FO$_2^-$ [M-H]: 215.0514, found: 215.0514. The spectroscopic data correspond to those previously reported in the literature.4

80.0 mg, 93% yield, white solid. 1H NMR (400 MHz, acetone-d_6): δ 8.16 (d, $J = 8.4$ Hz, 1H), 8.02-7.97 (m, 3H), 7.75 (d, $J = 33.6$ Hz, 1H), 7.68-7.58 (m, 3H); 13C NMR (125 MHz, acetone-d_6): δ 161.40 (d, $J = 35.9$ Hz, 1C), 148.20 (d, $J = 264.5$ Hz, 1C), 133.78, 131.34, 129.96 (d, $J = 1.6$ Hz, 1C), 128.80, 128.42 (d, $J = 10.5$ Hz, 1C), 127.23 (d, $J = 3.5$ Hz, 1C), 127.01, 126.23, 125.46, 123.51, 113.49 (d, $J = 5.9$ Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -125.49; HRMS (ESI): Exact mass calcd for C$_{13}$H$_8$FO$_2^-$ [M-H]: 215.0514, found: 215.0517. The spectroscopic data correspond to those previously reported in the literature.5

73.5 mg, 83% yield, yellow solid. 1H NMR (500 MHz, acetone-d_6): δ 8.00-7.98 (m, 1H), 7.93-7.91 (m, 1H), 7.80 (s, 1H), 7.51-7.41 (m, 3H); 13C NMR (125 MHz, acetone-d_6): δ 160.85 (d, $J = 33.9$ Hz, 1C), 146.83 (d, $J = 264.4$ Hz, 1C), 141.64 (d, $J = 8.5$ Hz, 1C), 138.89, 133.62 (d, $J = 6.0$ Hz, 1C), 128.81 (d, $J = 4.3$ Hz, 1C), 125.99, 124.91, 124.43 (d, $J = 2.1$ Hz, 1C), 122.27, 112.09 (d, $J = 8.0$ Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -122.40; HRMS (ESI): Exact mass calcd for C$_{11}$H$_{9}$FO$_2$S$^-$ [M-H]: 221.0078, found: 221.0077.

59.0 mg, 72% yield, white solid. 1H NMR (500 MHz, acetone-d_6): δ 7.74 (dd, $J = 8.0$ Hz, $J = 1.5$ Hz, 1H), 7.58 (d, $J = 8.0$ Hz, 1H), 7.45-7.41 (m, 1H), 7.35-7.30 (m, 2H), 7.14 (d, $J = 30.0$ Hz, 1H); 13C NMR (125 MHz,

acetone-d_6): δ 160.89 (d, $J = 33.5$ Hz, 1C), 155.17 (d, $J = 2.1$ Hz, 1C), 148.72 (d, $J = 4.9$ Hz, 1C), 147.77 (d, $J = 269.0$ Hz, 1C), 128.46, 126.22, 123.55, 121.90, 111.24, 111.13 (d, $J = 10.7$ Hz, 1C), 106.50 (d, $J = 7.5$ Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -118.47; HRMS (ESI): Exact mass calcd for C$_{11}$H$_{6}$FO$_3$: [M-H]: 205.0306, found: 205.0311.

The spectroscopic data correspond to those previously reported in the literature.$[^5]$
7.6 Hz, 1C), 133.04 (d, J = 3.5 Hz, 1C), 130.27, 124.28 (d, J = 8.6 Hz, 1C), 123.88 (d, J = 1.8 Hz, 1C), 114.74; \(^{19}\)F NMR (376 MHz, acetone-\(d_6\)): \(\delta\) -121.67; HRMS (ESI): Exact mass calcd for C\(_9\)H\(_9\)FO\(_4\) [M-H]: 210.0208, found: 210.0200.

73.0 mg, 78% yield, white solid. \(^1\)H NMR (400 MHz, acetone-\(d_6\)): \(\delta\) 7.95 (d, \(J = 8.0\) Hz, 2H), 7.81 (d, \(J = 8.4\) Hz, 2H), 7.13 (d, \(J = 34.8\) Hz, 1H); \(^{13}\)C NMR (125 MHz, acetone-\(d_6\)): \(\delta\) 161.13 (d, \(J = 35.0\) Hz, 1C), 148.77 (d, \(J = 267.4\) Hz, 1C), 135.29, 130.60 (d, \(J = 8.1\) Hz, 1C), 130.42-129.92 (m, 1C), 125.65 (d, \(J = 4.1\) Hz, 1C), 124.17 (q, \(J = 269.8\) Hz, 1C), 115.26; \(^{19}\)F NMR (376 MHz, acetone-\(d_6\)): \(\delta\) -63.42, -121.77; HRMS (ESI): Exact mass calcd for C\(_{10}\)H\(_9\)F\(_4\)O\(_2\) [M-H]: 233.0231, found: 233.0230. The spectroscopic data correspond to those previously reported in the literature.\(^{[4]}\)

122.0 mg, 91% yield, white solid. \(^1\)H NMR (400 MHz, acetone-\(d_6\)): \(\delta\) 7.78-7.72 (m, 4H), 7.49 (d, \(J = 7.6\) Hz, 2H), 7.14 (d, \(J = 8.8\) Hz, 2H), 7.02 (d, \(J = 35.2\) Hz, 1H), 2.47 (s, 3H); \(^{13}\)C NMR (125 MHz, acetone-\(d_6\)): \(\delta\) 161.21 (d, \(J = 35.4\) Hz, 1C), 150.15 (d, \(J = 3.8\) Hz, 1C), 147.66 (d, \(J = 265.0\) Hz, 1C), 146.03, 132.28, 131.65 (d, \(J = 8.0\) Hz, 1C), 130.42 (d, \(J = 4.1\) Hz, 1C), 130.09, 128.41, 122.72, 115.57 (d, \(J = 4.5\) Hz, 1C), 20.71; \(^{19}\)F NMR (376 MHz, acetone-\(d_6\)): \(\delta\) -124.53; HRMS (ESI): Exact mass calcd for C\(_{10}\)H\(_{12}\)FO\(_5\)S [M-H]: 335.0395, found: 335.0386.

72.5 mg, 86% yield, white solid. \(^1\)H NMR (400 MHz, acetone-\(d_6\)): \(\delta\) 7.66 (d, \(J = 8.4\) Hz, 2H), 7.34 (d, \(J = 8.8\) Hz, 2H), 6.99 (d, \(J = 36.0\) Hz, 1H), 2.54 (s, 3H); \(^{13}\)C NMR (125 MHz, acetone-\(d_6\)): \(\delta\) 161.40 (d, \(J = 35.0\) Hz, 1C), 146.86 (d, \(J = 262.4\) Hz, 1C), 141.58 (d, \(J = 3.1\) Hz, 1C), 130.54 (d, \(J = 8.1\) Hz, 1C), 127.59 (d, \(J = 4.5\) Hz, 1C), 125.70, 116.75 (d, \(J = 4.6\) Hz, 1C), 13.87; \(^{19}\)F NMR (376 MHz, acetone-\(d_6\)): \(\delta\) -125.79; HRMS (ESI): Exact mass calcd for C\(_{10}\)H\(_8\)FO\(_2\)S [M-H]: 211.0235, found: 211.0235.

86.0 mg, 88% yield, white solid. \(^1\)H NMR (400 MHz, acetone-\(d_6\)): \(\delta\) 7.70-7.65 (m, 4H), 7.03 (d, \(J = 35.2\) Hz, 1H); \(^{13}\)C NMR (125 MHz, acetone-\(d_6\)): \(\delta\) 161.19 (d, \(J = 35.4\) Hz, 1C), 147.72 (d, \(J = 265.0\) Hz, 1C), 132.02, 131.89 (d,
\[J = 8.4 \text{ Hz, 1C}, \quad 130.53 \text{ (d, } J = 4.1 \text{ Hz, 1C}), \quad 123.30 \text{ (d, } J = 3.8 \text{ Hz, 1C}), \quad 115.86 \text{ (d, } J = 4.5 \text{ Hz, 1C}); \]

\(^{19}\text{F NMR (376 MHz, acetone-}d_6\text{): } \delta -123.89; \text{ HRMS (ESI): Exact mass calcd for C}_9\text{H}_5\text{Br}^{79}\text{FO}_2^-\text{ [M-H]}^-: 242.9462, \text{ found: 242.9461.} \]

\[\begin{array}{c}
\text{F} \\
\text{Br}
\end{array} \quad \begin{array}{c}
\text{CO}_2\text{H}
\end{array} \]

70.0 mg, 72% yield, white solid. \(^1\text{H NMR (400 MHz, acetone-}d_6\text{): } \delta 7.92 \text{ (dd, } J = 7.8 \text{ Hz, } J = 2.0 \text{ Hz, 1H}), \quad 7.75 \text{ (dd, } J = 8.4 \text{ Hz, } J = 1.2 \text{ Hz, 1H}), \quad 7.52-7.48 \text{ (m, 1H),}
\]

7.38-7.30 \text{ (m, 2H); } \(^{13}\text{C NMR (125 MHz, acetone-}d_6\text{): } \delta 148.38 \text{ (d, } J = 268.0 \text{ Hz, 1C}), \quad 133.17, \quad 131.23 \text{ (d, } J = 12.4 \text{ Hz, 1C}), \quad 131.11 \text{ (d, } J = 1.6 \text{ Hz, 1C}), \quad 130.91 \text{ (d, } J = 4.3 \text{ Hz, 1C}), \quad 128.06, \quad 124.08 \text{ (d, } J = 1.6 \text{ Hz, 1C}), \quad 114.84; \]

\(^{19}\text{F NMR (376 MHz, acetone-}d_6\text{): } \delta -124.41; \text{ HRMS (ESI): Exact mass calcd for C}_9\text{H}_5\text{Br}^{79}\text{FO}_2^-\text{ [M-H]}^-: 242.9462, \text{ found: 242.9460.} \]

\[\begin{array}{c}
\text{F} \\
\text{Cl}
\end{array} \quad \begin{array}{c}
\text{CO}_2\text{H}
\end{array} \]

69.5 mg, 87% yield, white solid. \(^1\text{H NMR (400 MHz, acetone-}d_6\text{): } \delta 7.75 \text{ (d, } J = 8.8 \text{ Hz, 2H}), \quad 7.51 \text{ (d, } J = 8.4 \text{ Hz, 2H}), \quad 7.04 \text{ (d, } J = 35.2 \text{ Hz, 1H); } \]

\(^{13}\text{C NMR (125 MHz, acetone-}d_6\text{): } \delta 161.26, \quad 147.65 \text{ (d, } J = 264.8 \text{ Hz, 1C}), \quad 134.92 \text{ (d, } J = 3.6 \text{ Hz, 1C}), \quad 131.70 \text{ (d, } J = 8.3 \text{ Hz, 1C}), \quad 130.15 \text{ (d, } J = 4.1 \text{ Hz, 1C), 129.00, 115.79 \text{ (d, } J = 4.5 \text{ Hz, 1C); } \]

\(^{19}\text{F NMR (376 MHz, acetone-}d_6\text{): } \delta -124.27; \text{ HRMS (ESI): Exact mass calcd for C}_9\text{H}_5\text{Cl}^{35}\text{FO}_2^-\text{ [M-H]}^-: 198.9968, \text{ found: 198.9967.} \]

\[\begin{array}{c}
\text{Cl} \\
\text{F}
\end{array} \quad \begin{array}{c}
\text{CO}_2\text{H}
\end{array} \]

64.0 mg, 80% yield, white solid. \(^1\text{H NMR (500 MHz, acetone-}d_6\text{): } \delta 7.75 \text{ (s, 1H), } \quad 7.68 \text{ (d, } J = 7.5 \text{ Hz, 1H), } \quad 7.51-7.45 \text{ (m, 2H), } \quad 7.04 \text{ (d, } J = 35.0 \text{ Hz, 1H); } \]

\(^{13}\text{C NMR (125 MHz, acetone-}d_6\text{): } \delta 161.25 \text{ (d, } J = 35.1 \text{ Hz, 1C}), \quad 148.15 \text{ (d, } J = 266.0 \text{ Hz, 1C}), \quad 134.19, \quad 133.33 \text{ (d, } J = 4.1 \text{ Hz, 1C), 130.53, 129.59 \text{ (d, } J = 8.5 \text{ Hz, 1C), 129.42 \text{ (d, } J = 2.5 \text{ Hz, 1C), 128.53 \text{ (d, } J = 8.1 \text{ Hz, 1C), 115.51 \text{ (d, } J = 4.2 \text{ Hz, 1C); } \]

\(^{19}\text{F NMR (376 MHz, acetone-}d_6\text{): } \delta -122.96; \text{ HRMS (ESI): Exact mass calcd for C}_9\text{H}_5\text{Cl}^{35}\text{FO}_2^-\text{ [M-H]}^-: 198.9968, \text{ found: 198.9965.} \]

\[\begin{array}{c}
\text{Cl} \\
\text{F}
\end{array} \quad \begin{array}{c}
\text{CO}_2\text{H}
\end{array} \]

65.5 mg, 82% yield, white solid. \(^1\text{H NMR (400 MHz, acetone-}d_6\text{): } \delta 7.96-7.94 \text{ (m, 1H), } \quad 7.57-7.55 \text{ (m, 1H), } \quad 7.47-7.44 \text{ (m, 2H), } \quad 7.37 \text{ (d, } J = 34.0 \text{ Hz, 1H); } \]

\(^{13}\text{C NMR (125 MHz, acetone-}d_6\text{): } \delta 161.14, \quad 148.44 \text{ (d, } J = 268.0 \text{ Hz, 1C), 133.65 \text{ (d, } J = 1.9 \text{ Hz, 1C), 131.12 \text{ (d, } J = 12.88 \text{ Hz, 1C), 130.98 \text{ (d, } J = 1.8 \text{ Hz, 1C), 129.82, 129.10 \text{ (d, } J = 4.5 \text{ Hz, 1C), 127.51, 112.16 \text{ (d, } J = 3.8 \text{ Hz, 1C); } \]

\(^{19}\text{F NMR (376 MHz, acetone-}d_6\text{): } \delta -124.01; \text{ HRMS (ESI): Exact mass calcd for C}_9\text{H}_5\text{Cl}^{35}\text{FO}_2^-\text{ [M-H]}^-: 198.9968, \text{ found: 198.9965.} \]

7
65.5 mg, 86% yield, white solid. 1H NMR (400 MHz, acetone-d_6): δ 7.93 (d, $J = 8.8$ Hz, 2H), 7.88 (d, $J = 8.8$ Hz, 2H), 7.13 (d, $J = 34.8$ Hz, 1H); 13C NMR (125 MHz, acetone-d_6): δ 160.94 (d, $J = 34.9$ Hz, 1C), 149.00 (d, $J = 268.0$ Hz, 1C), 135.81 (d, $J = 4.0$ Hz, 1C), 132.55, 130.70 (d, $J = 8.2$ Hz, 1C), 118.13, 115.18 (d, $J = 4.0$ Hz, 1C), 112.57 (d, $J = 3.1$ Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -120.87; HRMS (ESI): Exact mass calcd for C$_{10}$H$_3$FNO$_2^-$ [M-H]: 190.0310, found: 190.0313. The spectroscopic data correspond to those previously reported in the literature. [4]

72.5 mg, 95% yield, white solid. 1H NMR (500 MHz, acetone-d_6): δ 8.09 (s, 1H), 8.05 (d, $J = 8.0$ Hz, 1H), 7.83 (d, $J = 7.5$ Hz, 1H), 7.71 (t, $J = 8.0$ Hz, 1H), 7.11 (d, $J = 33.5$ Hz, 1H); 13C NMR (100 MHz, DMSO-d_6): δ 162.00 (d, $J = 34.6$ Hz, 1C), 148.83 (d, $J = 267.0$ Hz, 1C), 134.74 (d, $J = 8.7$ Hz, 1C), 133.76 (d, $J = 7.2$ Hz, 1C), 133.34 (d, $J = 2.1$ Hz, 1C), 132.71 (d, $J = 3.6$ Hz, 1C), 130.66, 118.79, 114.99 (d, $J = 3.7$ Hz, 1C), 112.59; 19F NMR (376 MHz, DMSO-d_6): δ -120.91; HRMS (ESI): Exact mass calcd for C$_{10}$H$_3$FNO$_2^-$ [M-H]: 190.0310, found: 190.0312.

78.0 mg, 83% yield, white solid. 1H NMR (400 MHz, acetone-d_6): δ 7.92 (d, $J = 2.0$ Hz, 1H), 7.73-7.67 (m, 2H), 7.05 (d, $J = 34.4$ Hz, 1H); 13C NMR (125 MHz, acetone-d_6): δ 161.13, 148.43 (d, $J = 266.7$ Hz, 1C), 132.74 (d, $J = 3.4$ Hz, 1C), 132.28, 131.88 (d, $J = 3.9$ Hz, 1C), 131.61 (d, $J = 8.2$ Hz, 1C), 130.99, 129.80 (d, $J = 8.5$ Hz, 1C), 114.56 (d, $J = 4.1$ Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -122.34; HRMS (ESI): Exact mass calcd for C$_9$H$_4$Cl$_2$F$_2$O$_2^-$ [M-H]: 232.9578, found: 232.9573.

80.5 mg, 82% yield, white solid. 1H NMR (400 MHz, acetone-d_6): δ 7.68 (s, 1H), 7.59 (d, $J = 8.4$ Hz, 1H), 7.40 (d, $J = 8.4$ Hz, 1H), 7.08 (d, $J = 34.8$ Hz, 1H); 13C NMR (125 MHz, acetone-d_6): δ 161.26, 147.42 (d, $J = 264.8$ Hz, 1C), 143.92 (d, $J = 3.1$ Hz, 1C), 143.79, 131.63 (t, $J = 252.1$ Hz, 1C), 128.03 (d, $J = 3.8$ Hz, 1C), 127.20 (d, $J = 7.3$ Hz, 1C), 115.81 (d, $J = 4.0$ Hz, 1C), 110.79 (d, $J = 7.9$ Hz, 1C), 110.15; 19F NMR (376 MHz, acetone-d_6): δ -51.27, -124.86; HRMS (ESI): Exact mass calcd for C$_{10}$H$_4$F$_3$O$_4^-$ [M-H]: 245.0067, found: 245.0062.
56.0 mg, 73% yield, white solid. 1H NMR (400 MHz, acetone-d_6): δ 7.64-7.61 (m, 2H), 7.43-7.33 (m, 3H), 7.21-7.07 (m, 2H), 6.90 (dd, $J =$ 31.4 Hz, $J =$ 10.4 Hz, 1H); 13C NMR (125 MHz, acetone-d_6): δ 161.04 (d, $J =$ 34.1 Hz, 1C), 146.87 (d, $J =$ 260.6 Hz, 1C), 139.10 (d, $J =$ 4.4 Hz, 1C), 136.30 (d, $J =$ 1.9 Hz, 1C), 129.03, 128.84, 127.24, 118.65 (d, $J =$ 8.9 Hz, 1C), 118.53 (d, $J =$ 2.4 Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -128.60; HRMS (ESI): Exact mass calcd for $\text{C}_{11}\text{H}_8\text{FO}_2^-$ [M-H]: 191.0514, found: 191.0514.

56.0 mg, 67% yield, white solid. 1H NMR (500 MHz, acetone-d_6): δ 7.70-7.66 (m, 2H), 7.19-7.14 (m, 2H), 7.12-7.04 (m, 2H), 6.87 (dd, $J =$ 31.5 Hz, $J =$ 10.0 Hz, 1H); 13C NMR (125 MHz, acetone-d_6): δ 163.04 (d, $J =$ 246.1 Hz, 1C), 161.17 (d, $J =$ 34.2 Hz, 1C), 146.92 (d, $J =$ 260.5 Hz, 1C), 137.71 (d, $J =$ 4.5 Hz, 1C), 132.83 (dd, $J =$ 3.6 Hz, $J =$ 1.7 Hz, 1C), 129.29 (d, $J =$ 8.2 Hz, 1C), 118.53 (d, $J =$ 14.6 Hz, 1C), 118.50 (d, $J =$ 3.0 Hz, 1C), 115.70 (d, $J =$ 21.7 Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -113.57 (d, $J =$ 2.6 Hz, 1F), -128.47 (d, $J =$ 2.3 Hz, 1F); HRMS (ESI): Exact mass calcd for $\text{C}_{11}\text{H}_7\text{F}_2\text{O}_2^-$ [M-H]: 209.0420, found: 209.0415.

52.0 mg, 63% yield, white solid. 1H NMR (400 MHz, acetone-d_6): δ 7.42-7.41 (m, 4H), 7.35-7.30 (m, 1H), 6.97 (s, 1H), 6.76 (d, $J =$ 35.6 Hz, 1H), 2.22 (dd, $J =$ 2.8 Hz, $J =$ 1.2 Hz, 3H); 13C NMR (125 MHz, acetone-d_6): δ 161.77 (d, $J =$ 34.9 Hz, 1C), 146.07 (d, $J =$ 262.7 Hz, 1C), 137.18 (d, $J =$ 6.1 Hz, 1C), 136.60, 131.09 (d, $J =$ 5.7 Hz, 1C), 129.37, 128.32, 127.64, 121.91 (d, $J =$ 4.0 Hz, 1C), 15.82 (d, $J =$ 7.1 Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -127.49; HRMS (ESI): Exact mass calcd for $\text{C}_{12}\text{H}_{10}\text{F}_2\text{O}_2^-$ [M-H]: 205.0665, found: 205.0656.

75.0 mg, 70% yield, white solid. 1H NMR (500 MHz, acetone-d_6): δ 7.54-7.48 (m, 3H), 7.38 (s, 5H), 7.28-7.26 (m, 2H), 7.07 (d, $J =$ 11.5 Hz, 1H), 6.69 (dd, $J =$ 31.0 Hz, $J =$ 12.0 Hz, 1H); 13C NMR (125 MHz, acetone-d_6): δ 161.09 (d, $J =$ 34.4 Hz, 1C), 149.76 (d, $J =$ 5.2 Hz, 1C), 147.81 (d, $J =$ 263.0 Hz, 1C), 141.04, 138.52, 130.13, 128.82, 128.58, 128.51, 128.45, 127.94, 117.04 (d, $J =$ 1.7 Hz, 1C), 115.78 (d, $J =$ 7.4 Hz, 1C); 19F NMR (376 MHz, acetone-d_6): δ -127.59; HRMS (ESI): Exact mass calcd for $\text{C}_{17}\text{H}_{12}\text{FO}_2^-$ [M-H]: 267.0827, found: 267.0823.
34.2 mg, 87% yield, white solid. 1H NMR (400 MHz, acetone-d_6): δ 8.16 (s, 1H), 7.99-7.93 (m, 3H), 7.88-7.84 (m, 2H), 7.58-7.56 (m, 2H), 6.67 (d, $J = 16.0$ Hz, 1H); 13C NMR (125 MHz, acetone-d_6): δ 166.85, 144.55, 134.31, 133.49, 132.19, 129.79, 128.65, 128.54, 127.73, 127.72, 126.71, 123.71, 118.66; HRMS (ESI): Exact mass calcd for C13H9O$_2$-$[M-H]$: 197.0603, found: 197.0606.

18.4 mg, 57% yield, white solid. 1H NMR (500 MHz, DMSO-d_6): δ 12.4 (br, 1H), 7.58 (d, $J = 16.0$ Hz, 1H), 7.53 (dd, $J = 6.5$ Hz, $J = 2.0$ Hz, 2H), 7.18 (d, $J = 8.0$ Hz, 2H), 6.47 (d, $J = 16.0$ Hz, 1H), 2.29 (s, 3H); 13C NMR (125 MHz, DMSO-d_6): δ 168.22, 144.37, 140.54, 131.93, 129.93, 128.58, 118.52, 21.41. The spectroscopic data correspond to those previously reported in the literature.[6]

36.2 mg, 81% yield, white solid. 1H NMR (500 MHz, DMSO-d_6): δ 12.44 (br, 1H), 7.79-7.75 (m, 2H), 7.73-7.63 (m, 5H), 7.50-7.43 (m, 2H), 7.41-7.36 (m, 1H), 6.58 (dd, $J = 16.0$ Hz, $J = 9.5$ Hz, 1H); 13C NMR (100 MHz, DMSO-d_6): δ 168.08, 143.88, 142.17, 139.70, 133.84, 129.45, 129.29, 128.36, 127.52, 127.12, 119.66. The spectroscopic data correspond to those previously reported in the literature.[7]

25.2 mg, 70% yield, white solid. 1H NMR (500 MHz, DMSO-d_6): δ 12.49 (br, 1H), 7.64 (d, $J = 8.5$ Hz, 2H), 7.57 (d, $J = 16.5$ Hz, 1H), 7.38 (d, $J = 8.5$ Hz, 2H), 6.51 (dd, $J = 16.0$ Hz, $J = 5.5$ Hz, 1H); 13C NMR (125 MHz, DMSO-d_6): δ 167.91, 142.91, 135.18, 133.55, 130.19, 129.26, 120.42. The spectroscopic data correspond to those previously reported in the literature.[7]

4. Product elaboration

In a flame-dried Schlenk tube (10 mL) containing a stirring bar, a solution of 2a (43.0 mg, 0.2 mmol, 1.0 equiv) and LiAlH₄ (15.0 mg, 0.4 mmol, 2.0 equivs) in Et₂O (2.0 mL) was stirred for 5 h at 0 °C and then quenched by water (0.5 mL). The solution was extracted with EtOAc (3×5 mL). The organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate 7/1 to 3/1) to give the product 8 (35.0 mg, 87% yield) as a white solid.

\[\text{H NMR (500 MHz, CDCl}_3\text{: }\delta \text{ 7.93 (s, 1H), 7.82–7.79 (m, 3H), 7.69–7.67 (m, 1H), 7.47–7.45 (m, 2H), 5.94 (d, } J = 38.5 \text{ Hz, 1H), 4.33 (d, } J = 14.5 \text{ Hz, 2H); }^1\text{C NMR (125 MHz, CDCl}_3\text{: }\delta \text{ 158.43 (d, } J = 265.5 \text{ Hz, 1C), 133.37, 132.60 (d, } J = 1.9 \text{ Hz, 1C), 130.24 (d, } J = 3.0 \text{ Hz, 1C), 128.11, 128.09, 127.92 (d, } J = 7.0 \text{ Hz, 1C), 127.59, 126.52 (d, } J = 7.5 \text{ Hz, 1C), 126.24, 126.16, 107.66 (d, } J = 6.5 \text{ Hz, 1C), 62.02 (d, } J = 32.2 \text{ Hz, 1C); }^1\text{H NMR (376 MHz, CDCl}_3\text{: }\delta \text{ -112.99. The spectroscopic data correspond to those previously reported in the literature.}\]

A flame-dried tube filled with nitrogen was charged with 2a (43.0 mg, 0.2 mmol, 2.0 equivs), 1,3,4-oxadiazole (0.1 mmol, 14.5 mg, 1.0 equiv), dppe (8.0 mg, 0.02 mmol), Pd(acac)₂ (3.0 mg, 0.01 mmol), CuCO₃ (77.5 mg, 0.35 mmol, 3.5 equivs), 4 Å MS (50.0 mg). After which, the tube was purged and back-filled with nitrogen (this operation was repeated three times), then anhydrous DMA (0.7 mL) and DMSO (0.3 mL) were added. The tube was sealed and heated at 140 °C for 12 hours then cooled to room temperature. The reaction mixture was poured into NH₄Cl (10 mL)/EtOAc (10 mL), then was filtered through a plug of celite (washed with EtOAc) and extracted with EtOAc (3×10 mL). The combined organic layer was dried over Na₂SO₄, filtrated and the solvent was removed under reduced pressure. The crude product was then purified by flash silica gel column chromatography (petroleum ether/EtOAc 15/1 to 10/1) affording the desired compound 9 in 75% yield (23.5 mg) as a white solid.

\[\text{H NMR (500 MHz, CDCl}_3\text{: }\delta \text{ 8.17-8.15 (m, 3H),}\]

7.92-7.85 (m, 4H), 7.63-7.52 (m, 5H), 7.07 (d, J = 37.0 Hz, 1H); 13C NMR (125 MHz, CDCl$_3$): δ 164.86, 159.40 (d, J = 37.2 Hz, 1C), 143.42 (d, J = 254.7 Hz, 1C), 133.49 (d, J = 2.0 Hz, 1C), 132.23, 130.34 (d, J = 7.6 Hz, 1C), 129.21, 128.76, 128.72, 128.69, 128.56, 127.72, 127.33, 127.17, 126.73, 126.56 (d, J = 8.1 Hz, 1C), 123.25, 114.71 (d, J = 4.1 Hz, 1C); 19F NMR (376 MHz, CDCl$_3$): δ -126.68. The spectroscopic data correspond to those previously reported in the literature.$^{[9]}$

6a

<Chemical Structure Image>

<NMR Spectrum Image>