Supporting Information for

Expansiines A-D: four unusual isoprenoid epoxycyclohexenones generated by *Penicillium expansum* YJ-15 fermentation and

photopromotion

Jia-Peng Wang[‡], Yan Shu[‡], Shi-Xi Liu, Jun-Tao Hu, Cheng-Tong Sun, Hao Zhou, Dong Gan, Xue-Yun Cai, Wei Pu, Le Cai^{*} and Zhong-Tao Ding^{*}

Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China.

Contents

Crystallographic data of 1	1
Crystallographic data of 3	2
Table S1. ¹ H and ¹³ C NMR data (recorded in CDCl ₃) for methylene of oxetane ring in compo	unds
3 and 7-10	3
Figure S2. ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of expansiine A (1)	10
Figure S3. ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of expansiine A (1).	11
Figure S4. ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of expansiine A (1).	12
Figure S5. Enlarged ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of expansione A (1)	13
Figure S6. HMBC spectrum (CDCl ₃ , 600 MHz) of expansiine A (1)	14
Figure S7. HSQC spectrum (CDCl ₃ , 600 MHz) of expansiine A (1)	15
Figure S8. NOESY spectrum (CDCl ₃ , 600 MHz) of expanstine A (1).	16
Figure S9. Enlarged NOESY spectrum (CDCl ₃ , 600 MHz) of expansiine A (1).	17
Figure S10. (+)-HR-ESI-MS [M + H] ⁺ of expanstine A (1)	18
Figure S11. ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of expansiine B (2).	19
Figure S12. ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of expansiine B (2)	20
Figure S13. ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of expansione B (2)	21
Figure S14. Enlarged ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of expansione B (2)	22
Figure S15. HMBC spectrum (CDCl ₃ , 600 MHz) of expansiine B (2)	23
Figure S16. HSQC spectrum (CDCl ₃ , 600 MHz) of expanstine B (2)	24
Figure S17. ROESY spectrum (CDCl ₃ , 600 MHz) of expansiine B (2).	25
Figure S18. Enlarged ROESY spectrum (CDCl ₃ , 600 MHz) of expansiine B (2).	26
Figure S19. (+)-HR-ESI-MS $[M + H]^+$ of expansione B (2).	27
Figure S20. ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of expansiine C (3)	28
Figure S21. ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of expansiine C (3)	29
Figure S22. ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of expansitne C (3)	30
Figure S23. Enlarged ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of expansione C (3)	31
Figure S24. HMBC spectrum (CDCl ₃ , 600 MHz) of expansiine C (3)	32
Figure S25. HSQC spectrum (CDCl ₃ , 600 MHz) of expansiine C (3)	33
Figure S26. NOESY spectrum (CDCl ₃ , 600 MHz) of expansiine C (3)	34
Figure S27. Enlarged ROESY spectrum (CDCl ₃ , 600 MHz) of expansitne C (3).	35
Figure S28. (+)-HR-ESI-MS [M + Na] ⁺ of expansitne C (3)	36
Figure S29. ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of expansiine D (4)	37
Figure S30. ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of expansiine D (4)	38
Figure S31. ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of expansione D (4)	39
Figure S32. Enlarged ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of expansione D (4)	40
Figure S33. HMBC spectrum (CDCl ₃ , 600 MHz) of expansiine D (4).	41
Figure S34. HSQC spectrum (CDCl ₃ , 600 MHz) of expansiine D (4)	42
Figure S35. NOESY spectrum (CDCl ₃ , 600 MHz) of expansiine D (4)	43
Figure S36. Enlarged NOESY spectrum (CDCl ₃ , 600 MHz) of expansione D (4)	44
Figure S37. (+)-HR-ESI-MS [M + Na] ⁺ of expansione D (4).	45
Figure S38. Extracted ion chromatogram (EIC, $[M + H]^+$) of compounds 1, 4, and 5 of the M	eOH
extract and purified compounds 1 and 4.	46

Figure S39.	Extracted ion	chromatogram	(EIC,	[M + H]) of comp	ounds 2, 3	, and 6 o	of the Me	OH
extract and	purified comp	ounds 2 and 3							.47

4'-oxomacrophorin A 7'-acetate (**5**): light yellow powder, C₂₄H₃₂O₅, ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$: 6.49 (1H, s, H-2'), 4.95 (1H, d, J = 16.2 Hz, H-7'a), 4.82 (1H, s, H-12a), 4.59 (1H, d, J = 16.2 Hz, H-7'b), 4.49 (1H, s, H-12b), 3.73 (1H, s, H-5'), 0.85 (3H, s, H-13), 0.79 (3H, s, H-14), 0.72 (3H, s, H-15); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C}$ 192.3 (s, C-4'), 191.8 (s, C-1'), 1670.0 (s, C-8'), 148.8 (s, C-8), 142.8 (s, C-3'), 132.7 (d, C-2'), 107.0 (t, C-12), 62.7 (s, C-6'), 59.4 (t, C-7'), 59.0 (d, C-5'), 55.6 (d, C-5), 51.5 (d, C-9), 42.1 (t, C-3), 39.9 (s, C-10), 39.0 (t, C-1), 38.1 (t, C-7), 33.7 (s, C-4), 33.6 (q, C-13), 24.5 (t, C-6), 21.8 (q, C-14), 20.7 (q, C-9'), 20.2 (t, C-11), 19.4 (t, C-2), 14.6 (q, C-15).

4'-oxomacrophorin A (**6**)¹: light yellow powder, C₂₂H₃₀O₄, ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$: 6.58 (1H, s, H-2'), 4.80 (1H, s, H-12a), 4.57 (1H, d, *J* = 16.2 Hz, H-7'b), 4.50 (1H, s, H-12b), 4.32 (1H, d, *J* = 16.2 Hz, H-7'a), 3.71 (1H, s, H-5'), 0.84 (3H, s, H₃-13), 0.79 (3H, s, H₃-14), 0.73 (3H, s, H₃-15); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C}$ 193.5 (s, C-4'), 192.2 (s, C-1'), 149.0 (s, C-8), 145.8 (s, C-3'), 132.4 (d, C-2'), 106.7 (t, C-12), 62.8 (s, C-6'), 59.4 (t, C-7'), 59.1 (d, C-5'), 55.5 (d, C-5), 51.4 (d, C-9), 42.3 (t, C-3), 40.0 (s, C-10), 38.9 (t, C-1), 38.1 (t, C-7), 33.5 (s, C-4), 33.5 (q, C-13), 24.5 (t, C-6), 21.9 (q, C-14), 20.2 (t, C-11), 19.3 (t, C-2), 14.4 (q, C-15).

Crystallographic data of 1.

Crystals of 1 (colorless prism) was obtained from CHCl₃ and the crystal data of 1 was collected on a Bruker Apex DUO diffractometer using graphin-monochromated Cu K α radiation ($\lambda = 1.54178$ Å). The crystallographic data have been deposited in the Cambridge Crystallographic Data Centre with the deposition number CCDC 1861546. A copy of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44(0)-1233-336033 or e-mail: deposit@ccdc.cam.ac.uk).

View of the pack drawing of expansione A (1). Hydrogen-bonds are shown as dashed lines

Crystallographic data of 3.

Orthorhombic crystals of **3** was obtained from a mixture solution (petroleum ether : acetone = 3:1) and the crystal data was collected on a Bruker Apex DUO diffractometer using graphin-monochromated Cu K α radiation (λ = 1.54178 Å). The crystallographic data have been deposited in the Cambridge Crystallographic Data Centre with the deposition number CCDC 1901871. A copy of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44(0)-1233-336033 or e-mail: deposit@ccdc.cam.ac.uk).

View of the molecules in an asymmetric unit.

Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of expansione C (**3**). Hydrogen-bonds are shown as dashed lines.

Table S1. ¹H and ¹³C NMR data (recorded in CDCl₃) for methylene of oxetane ring in

compound	$\delta_{ m C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$				
3	75.8	4.29 (1H, d, <i>J</i> = 8.4);				
		4.82 (1H, d, J = 8.4)				
7 $(taxol)^2$	76.6	4.24 (2H, dd, <i>J</i> = 29.7, 8.4)				
8 (baccatin V) ³	77.6	4.00 (1H, d, <i>J</i> = 8.5);				
		4.34 (1H, d, J = 8.0)				
9 $(13$ -oxobaccatin III) ⁴	77.2	4.14 (1H, d, <i>J</i> = 8.0);				
		4.35 (1H, d, <i>J</i> = 8.0)				
10 (wallifoliol) ⁵	74.2	4.20 (1H, d, <i>J</i> = 8.5);				
		4.66 (1H, d, <i>J</i> = 8.5)				

compounds **3** and **7-10**.

DAD1 C, Sig=210,4 Ref=off (WANGJIAPENG\/B4-sun-30min 2019-06-21 21-03-42\/001-P1-A1-IB4-sun-30min.D) mAU † 1 60 -The transformation of 5 after 30 min under sunlight 50 -40 -4 30 -10.735 20 10 -0 12 18 10 14 16 面积百分比报告 排序 信号 乘积因子 : 1.0000 稀释因子 1.0000 : 内标使用乘积因子和稀释因子 信号 1: DAD1 C, Sig=210,4 Ref=off 峰 保留时间 类型 峰宽 峰面积 峰高 峰面积 # [min] [min] [mAU*s] [mAU] % ---|---1 -------|-----|-
 1
 8. 599 BB
 0. 1317
 588. 30194

 2
 10. 735 BB
 0. 1368
 186. 61043
 67.46300 75.9185 20. 78205 24. 0815 总量: 774. 91237 88. 24505

All Optimized Cartesian Coordinates

Compound 1

Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Ζ

1	6	0	3.012667	-0.633163	0.202335
2	6	0	3.441801	0.887096	0.176432
3	6	0	3.276643	-1.206794	-1.217135
4	6	0	4.895286	1.202139	-0.327568
5	6	0	4.725662	-0.998406	-1.676719
6	6	0	5.113329	0.481687	-1.681789
7	6	0	1.523084	-0.714741	0.575254
8	6	0	0.901222	0.265825	1.262683
9	6	0	3.056908	1.583322	1.491465
10	6	0	1.537489	1.570084	1.668495
11	6	0	0.703325	-1.969329	0.215764
12	6	0	-0.768289	-1.677121	-0.164733
13	6	0	-0.598803	0.186852	1.340519
14	6	0	-1.075970	-0.188028	-0.119351
15	6	0	-1.897468	-2.590974	0.120400
16	6	0	-3.300513	-2.037155	0.293995
17	6	0	-2.503331	0.199311	-0.284825
18	6	0	-3.537897	-0.616141	-0.046344
19	6	0	6.006220	0.822918	0.675743
20	6	0	5.028987	2.719296	-0.599098
21	6	0	3.724846	-1.511123	1.259889
22	8	0	-0.375471	0.515781	-1.137229
23	8	0	-1.337208	-2.462046	-1.207389
24	8	0	-4.200670	-2.752387	0.713296
25	6	0	-4.971909	-0.164941	-0.004981
26	8	0	-5.028776	1.247428	-0.278648
27	6	0	-6.273179	1.789249	-0.296805
28	6	0	-6.214114	3.262748	-0.621246
29	8	0	-7.279247	1.153312	-0.080267
30	1	0	-1.741691	-3.556530	0.600021
31	1	0	3.048171	-2.277199	-1.246030
32	1	0	2.598598	-0.723962	-1.935564
33	1	0	5.406104	-1.568381	-1.033088
34	1	0	4.849148	-1.414701	-2.683400
35	1	0	4.511017	0.994132	-2.445576
36	1	0	6.160476	0.600014	-1.988469
37	1	0	3.532909	1.081703	2.341202
38	1	0	3.411818	2.617361	1.507099
39	1	0	1.080870	2.362811	1.054930
40	1	0	1.259342	1.810610	2.704005
41	1	0	1.145135	-2.503517	-0.626180
42	1	0	0.723918	-2.666276	1.063752
43	1	0	-0.958792	-0.587877	2.026400

44	1	0	-1.034701	1.134861	1.668245
45	1	0	-2.664203	1.242552	-0.536159
46	1	0	6.965478	1.225442	0.331579
47	1	0	5.815299	1.244822	1.667606
48	1	0	6.134435	-0.253850	0.792934
49	1	0	4.211635	3.090018	-1.228029
50	1	0	5.043695	3.310689	0.321186
51	1	0	5.968790	2.920403	-1.125056
52	1	0	4.783167	-1.674835	1.053784
53	1	0	3.636318	-1.082020	2.260963
54	1	0	3.250873	-2.498173	1.290379
55	1	0	-5.587936	-0.707655	-0.729055
56	1	0	-5.404056	-0.371335	0.979665
57	1	0	-5.609076	3.789075	0.122818
58	1	0	-5.739714	3.414038	-1.595199
59	1	0	-7.224595	3.669355	-0.632643
60	1	0	2.795996	1.331021	-0.600203
61	1	0	0.566586	0.455042	-0.914289

Compound 4	4					
Center	Atomic	Atomic		Coordinates (Angstroms)	
Number	Number	Туре	Х	Y	7	Z
1	6	0	4.490388	-0.037503	1.127389	
2	6	0	5.123417	0.692703	-1.268031	
3	6	0	3.650946	0.702509	-1.690297	
4	6	0	2.792897	-0.342448	-0.933582	
5	6	0	3.012458	-0.219417	0.614770	
6	6	0	5.233972	0.983795	0.230662	
7	6	0	1.275696	-0.118415	-1.251560	
8	6	0	0.270714	-0.923732	-0.319969	
9	6	0	0.734754	-1.232512	1.111102	
10	6	0	2.249040	-1.349132	1.331637	
11	6	0	0.747808	1.354518	-1.343017	
12	6	0	-0.580883	1.342976	-0.618073	
13	6	0	-1.034994	-0.085698	-0.437407	
14	6	0	-0.494066	-1.923113	-1.212645	
15	8	0	-1.380605	-0.848517	-1.650987	
16	6	0	-1.528128	2.444701	-0.371119	
17	6	0	-2.935245	2.091941	0.047261	
18	6	0	-3.120801	0.743566	0.659528	
19	6	0	-2.205085	-0.231806	0.489857	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6	0	-4.409787	0.512911	1.409022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	8	0	-5.474422	0.084982	0.520283
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	8	0	-3.844536	2.900053	-0.058815
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	6	0	-5.568014	-1.243832	0.287466
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	8	0	-4.841315	-2.076804	0.788828
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	6	0	-6.689233	-1.534564	-0.680074
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	3.268441	1.710883	-1.496641
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	0	3.552018	0.537976	-2.771403
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1	0	2.514247	0.722966	0.895355
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	1	0	4.817054	1.983983	0.417292
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	6.286066	1.029006	0.539984
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	1	0	1.132986	-0.524036	-2.257053
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	0	0.376072	-0.408533	1.741593
3410 2.614861 -2.324822 0.997454 35 10 2.434953 -1.313957 2.409754 36 10 1.385272 2.086114 -0.843768 37 10 0.649189 1.658589 -2.387646 38 10 -1.399087 3.430133 -0.815040 39 10 -2.404159 -1.216704 0.904533 40 10 -4.274842 -0.239039 2.187879 41 10 -4.775398 1.447451 1.833794 42 10 -7.607624 -1.034194 -0.363115 43 10 -6.426713 -1.142225 -1.667522 44 10 -6.844026 -2.611046 -0.744117 45 80 -0.564166 2.063472 0.633407 46 10 -1.052167 -2.85078 -2.052319 48 60 5.299412 -1.351964 1.198119 49 10 6.273822 -1.158516 1.660873 50 10 5.491361 -1.792910 0.217698 52 60 4.447683 0.552348 2.555813 53 10 5.672102 1.454158 -1.835072 54 10 5.596760 -0.265544 -1.513079 57 10 5.672102 1.454158 -1.835072 58 6	33	1	0	0.226359	-2.132792	1.477667
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1	0	2.614861	-2.324822	0.997454
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	1	0	2.434953	-1.313957	2.409754
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1	0	1.385272	2.086114	-0.843768
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1	0	0.649189	1.658589	-2.387646
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1	0	-1.399087	3.430133	-0.815040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1	0	-2.404159	-1.216704	0.904533
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	0	-4.274842	-0.239039	2.187879
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	1	0	-4.775398	1.447451	1.833794
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1	0	-7.607624	-1.034194	-0.363115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	1	0	-6.426713	-1.142225	-1.667522
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1	0	-6.844026	-2.611046	-0.744117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	8	0	-0.564166	2.063472	0.633407
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1	0	-1.052167	-2.691699	-0.661046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	1	0	0.033977	-2.385078	-2.052319
4910 6.273822 -1.158516 1.660873 50 10 4.795419 -2.106866 1.808703 51 10 5.491361 -1.792910 0.217698 52 60 4.447683 0.552348 2.555813 53 10 5.461668 0.785898 2.899392 54 10 3.863891 1.478887 2.586073 55 10 4.012703 -0.142809 3.280580 56 10 5.596760 -0.265544 -1.513079 57 10 5.672102 1.454158 -1.835072 58 60 3.147400 -1.745222 -1.494391 59 10 3.043221 -1.739792 -2.584928 60 10 4.171014 -2.046322 -1.268659 61 10 2.488828 -2.530313 -1.113705	48	6	0	5.299412	-1.351964	1.198119
5010 4.795419 -2.106866 1.808703 51 10 5.491361 -1.792910 0.217698 52 60 4.447683 0.552348 2.555813 53 10 5.461668 0.785898 2.899392 54 10 3.863891 1.478887 2.586073 55 10 4.012703 -0.142809 3.280580 56 10 5.596760 -0.265544 -1.513079 57 10 5.672102 1.454158 -1.835072 58 60 3.147400 -1.745222 -1.494391 59 10 3.043221 -1.739792 -2.584928 60 10 4.171014 -2.046322 -1.268659 61 10 2.488828 -2.530313 -1.113705	49	1	0	6.273822	-1.158516	1.660873
5110 5.491361 -1.792910 0.217698 52 60 4.447683 0.552348 2.555813 53 10 5.461668 0.785898 2.899392 54 10 3.863891 1.478887 2.586073 55 10 4.012703 -0.142809 3.280580 56 10 5.596760 -0.265544 -1.513079 57 10 5.672102 1.454158 -1.835072 58 60 3.147400 -1.745222 -1.494391 59 10 3.043221 -1.739792 -2.584928 60 10 4.171014 -2.046322 -1.268659 61 10 2.488828 -2.530313 -1.113705	50	1	0	4.795419	-2.106866	1.808703
5260 4.447683 0.552348 2.555813 53 10 5.461668 0.785898 2.899392 54 10 3.863891 1.478887 2.586073 55 10 4.012703 -0.142809 3.280580 56 10 5.596760 -0.265544 -1.513079 57 10 5.672102 1.454158 -1.835072 58 60 3.147400 -1.745222 -1.494391 59 10 3.043221 -1.739792 -2.584928 60 10 4.171014 -2.046322 -1.268659 61 10 2.488828 -2.530313 -1.113705	51	1	0	5.491361	-1.792910	0.217698
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	6	0	4.447683	0.552348	2.555813
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	1	0	5.461668	0.785898	2.899392
5510 4.012703 -0.142809 3.280580 5610 5.596760 -0.265544 -1.513079 5710 5.672102 1.454158 -1.835072 5860 3.147400 -1.745222 -1.494391 5910 3.043221 -1.739792 -2.584928 6010 4.171014 -2.046322 -1.268659 6110 2.488828 -2.530313 -1.113705	54	1	0	3.863891	1.478887	2.586073
56105.596760-0.265544-1.51307957105.6721021.454158-1.83507258603.147400-1.745222-1.49439159103.043221-1.739792-2.58492860104.171014-2.046322-1.26865961102.488828-2.530313-1.113705	55	1	0	4.012703	-0.142809	3.280580
57105.6721021.454158-1.83507258603.147400-1.745222-1.49439159103.043221-1.739792-2.58492860104.171014-2.046322-1.26865961102.488828-2.530313-1.113705	56	1	0	5.596760	-0.265544	-1.513079
58603.147400-1.745222-1.49439159103.043221-1.739792-2.58492860104.171014-2.046322-1.26865961102.488828-2.530313-1.113705	57	1	0	5.672102	1.454158	-1.835072
59103.043221-1.739792-2.58492860104.171014-2.046322-1.26865961102.488828-2.530313-1.113705	58	6	0	3.147400	-1.745222	-1.494391
60104.171014-2.046322-1.26865961102.488828-2.530313-1.113705	59	1	0	3.043221	-1.739792	-2.584928
61 1 0 2.488828 -2.530313 -1.113705	60	1	0	4.171014	-2.046322	-1.268659
	61	1	0	2.488828	-2.530313	-1.113705

Center	Atomic	Atomic	Coore	dinates (Angst	roms)
Number	Number	Туре	Х	Y	2
1	6	0	-2.927337	0.138145	-0.554706
2	6	0	-3.523528	-0.406100	0.802778
3	6	0	-2.815449	-1.048436	-1.546634
4	6	0	-4.826935	-1.280695	0.715763
5	6	0	-4.119598	-1.840424	-1.701425
6	6	0	-4.613901	-2.375719	-0.357463
7	6	0	-1.477013	0.689543	-0.202931
8	6	0	-1.598542	1.801010	0.832151
9	6	0	-3.586880	0.693495	1.880193
10	6	0	-2.203831	1.324084	2.129763
11	6	0	-0.603691	1.043241	-1.429330
12	6	0	0.887322	0.903894	-1.184526
13	6	0	-1.312790	3.093318	0.639231
14	6	0	1.434611	-0.503917	-1.005854
15	6	0	1.731406	2.008518	-0.655911
16	6	0	2.996819	1.705142	0.096287
17	6	0	2.848274	-0.657496	-0.588228
18	6	0	3.586375	0.344770	-0.073051
19	6	0	-6.114346	-0.480858	0.420277
20	6	0	-5.042040	-2.006874	2.064453
21	6	0	-3.743053	1.273890	-1.209905
22	8	0	0.739660	-1.486012	-1.219078
23	8	0	1.752028	1.673039	-2.049144
24	8	0	3.517110	2.541196	0.818193
25	6	0	4.989948	0.192178	0.434792
26	8	0	5.405335	-1.168598	0.269325
27	6	0	6.684021	-1.440791	0.648886
28	6	0	7.005361	-2.898394	0.434053
29	8	0	7.432849	-0.602855	1.094235
30	1	0	1.274687	2.959880	-0.398897
31	1	0	-2.510022	-0.684475	-2.533755
32	1	0	-2.019396	-1.724826	-1.209682
33	1	0	-4.891273	-1.217017	-2.169909
34	1	0	-3.952459	-2.675851	-2.391970
35	1	0	-3.873452	-3.094038	0.023116
36	1	0	-5.547630	-2.938055	-0.488172
37	1	0	-4.289873	1.481557	1.587522
38	1	0	-3.960376	0.279977	2.821664
39	1	0	-1.549374	0.564120	2.582316

40	1	0	-2.282303	2.148082	2.846649
41	1	0	-0.835934	0.368956	-2.255448
42	1	0	-0.790998	2.057473	-1.789137
43	1	0	-0.937206	3.488532	-0.298221
44	1	0	-1.470070	3.820673	1.430680
45	1	0	3.246675	-1.663807	-0.659121
46	1	0	-6.985941	-1.138413	0.516043
47	1	0	-6.249901	0.342020	1.129015
48	1	0	-6.138965	-0.058496	-0.585599
49	1	0	-4.131512	-2.520522	2.393453
50	1	0	-5.353994	-1.326275	2.862235
51	1	0	-5.828928	-2.762340	1.960353
52	1	0	-4.702932	0.925402	-1.592431
53	1	0	-3.934637	2.103263	-0.526224
54	1	0	-3.192401	1.682540	-2.064491
55	1	0	5.669317	0.863418	-0.103347
56	1	0	5.047992	0.485207	1.488414
57	1	0	6.319729	-3.523261	1.013726
58	1	0	6.875547	-3.160778	-0.619872
59	1	0	8.032549	-3.089734	0.741449
60	1	0	-2.761385	-1.122816	1.150789
61	1	0	-0.982617	-0.153685	0.298640

Reference

- 1. H. Fujimoto, E. Nakamura, Y.-P. Kim, E. Okuyama, M. Ishibashi and T. Sassa, *Journal of Natural Products*, 2001, **64**, 1234-1237.
- B. Louage, L. Nuhn, M. D. P. Risseeuw, N. Vanparijs, R. De Coen, I. Karalic, S. Van Calenbergh and B. G. De Geest, *Angewandte Chemie International Edition*, 2016, **128**, 11967-11973.
- 3. J. Zhan, *Chinese Journal of Applied and Environmental Microbiology*, 2003, **9**, 429-432.
- 4. M. Zhang, X. Lu, J. Zhang, S. Zhang, M. Dong, C. Huo, Q. Shi, Y. Gu and B. Cong, *Chemistry of Natural Compounds*, 2010, **46**, 53-58.
- 5. D. G. V. Velde, G. I. Georg, S. R. Gollapudi, H. B. Jampani, X.-Z. Liang, L. A. Mitscher and Q.-M. Ye, *Journal of Natural Products*, 1994, **57**, 862-867.

Figure S2. ¹H NMR spectrum (CDCl₃, 600 MHz) of expansione A (1).

Figure S3. ¹³C NMR spectrum (CDCl₃, 150 MHz) of expansione A (1).

Figure S4. ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of expansione A (1).

Figure S5. Enlarged ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of expansione A (1).

Figure S6. HMBC spectrum (CDCl₃, 600 MHz) of expansione A (1).

Figure S7. HSQC spectrum (CDCl₃, 600 MHz) of expansione A (1).

Figure S8. NOESY spectrum (CDCl₃, 600 MHz) of expansione A (1).

Figure S9. Enlarged NOESY spectrum (CDCl₃, 600 MHz) of expansione A (1).

Figure S10. (+)-HR-ESI-MS $[M + H]^+$ of expansion A (1).

Figure S11. ¹H NMR spectrum (CDCl₃, 600 MHz) of expansione B (2).

Figure S12. ¹³C NMR spectrum (CDCl₃, 150 MHz) of expansione B (2).

Figure S13. ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of expansione B (2).

Figure S14. Enlarged ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of expansione B (**2**).

Figure S15. HMBC spectrum (CDCl₃, 600 MHz) of expansione B (2).

Figure S16. HSQC spectrum (CDCl₃, 600 MHz) of expansione B (2).

Figure S17. ROESY spectrum (CDCl₃, 600 MHz) of expansione B (2).

Figure S18. Enlarged ROESY spectrum (CDCl₃, 600 MHz) of expansione B (2).

Figure S19. (+)-HR-ESI-MS $[M + H]^+$ of expansion B (2).

Figure S20. ¹H NMR spectrum (CDCl₃, 600 MHz) of expansione C (3).

Figure S21. ¹³C NMR spectrum (CDCl₃, 150 MHz) of expansione C (3).

Figure S22. ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of expansione C (**3**).

Figure S23. Enlarged ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of expansione C (**3**).

Figure S24. HMBC spectrum (CDCl₃, 600 MHz) of expansione C (3).

Figure S25. HSQC spectrum (CDCl₃, 600 MHz) of expansione C (3).

Figure S26. NOESY spectrum (CDCl₃, 600 MHz) of expansione C (3).

Figure S27. Enlarged ROESY spectrum (CDCl₃, 600 MHz) of expansione C (3).

Figure S28. (+)-HR-ESI-MS $[M + Na]^+$ of expansion C (3).

Figure S29. ¹H NMR spectrum (CDCl₃, 600 MHz) of expansione D (4).

Figure S30. ¹³C NMR spectrum (CDCl₃, 150 MHz) of expansione D (4).

Figure S31. ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of expansione D (4).

Figure S32. Enlarged ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of expansione D (4).

Figure S33. HMBC spectrum (CDCl₃, 600 MHz) of expansione D (4).

Figure S34. HSQC spectrum (CDCl₃, 600 MHz) of expansione D (4).

Figure S35. NOESY spectrum (CDCl₃, 600 MHz) of expansione D (4).

Figure S36. Enlarged NOESY spectrum (CDCl₃, 600 MHz) of expansione D (4).

Figure S37. (+)-HR-ESI-MS $[M + Na]^+$ of expansion D (4).

Figure S38. Extracted ion chromatogram (EIC, $[M + H]^+$) of compounds 1, 4, and 5 of the MeOH extract and purified compounds 1 and 4.

Figure S39. Extracted ion chromatogram (EIC, $[M + H]^+$) of compounds 2, 3, and 6 of the MeOH extract and purified compounds 2 and 3.